Emulating Atlantic overturning strength for low emission scenarios: consequences for sea-level rise along the North American east coast

C. F. Schleussner1,2, K. Frieler1, M. Meinshausen1, J. Yin3, and A. Levermann1,2
1Potsdam Institute for Climate Impact Research, Telegrafenberg A62, 14473 Potsdam, Germany
2Physics Institute, Potsdam University, Potsdam, Germany
3Department of Geosciences, University of Arizona, Tucson, AZ 85721, USA

Received: 3 December 2010 – Published in Earth Syst. Dynam. Discuss.: 10 December 2010
Revised: 25 August 2011 – Accepted: 13 September 2011 – Published:

Abstract. In order to provide probabilistic projections of the future evolution of the Atlantic Meridional Overturning Circulation (AMOC), we calibrated a simple Stommel-type box model to emulate the output of fully coupled three-dimensional atmosphere-ocean general circulation models (AOGCMs) of the Coupled Model Intercomparison Project (CMIP). Based on this calibration to idealised global warming scenarios with and without interactive atmosphere-ocean fluxes and freshwater perturbation simulations, we project the future evolution of the AMOC mean strength within the covered calibration range for the lower two Representative Concentration Pathways (RCPs) until 2100 obtained from the reduced complexity carbon cycle-climate model MAGICC 6. For RCP3-PD with a global mean temperature median below 1.0 °C warming relative to the year 2000, we project an ensemble median weakening of up to 11 % compared to 22 % under RCP4.5 with a warming median up to 1.9 °C over the 21st century. Additional Greenland meltwater of 10 and 20 cm of global sea-level rise equivalent further weakens the AMOC by about 4.5 and 10 %, respectively. By combining our outcome with a multi-model sea-level rise study we project a dynamic sea-level rise along the New York City coastline of 4 cm for the RCP3-PD and of 8 cm for the RCP4.5 scenario over the 21st century. We estimate the total steric and dynamic sea-level rise for New York City to be about 24 cm until 2100 for the RCP3-PD scenario, which can hold as a lower bound for sea-level rise projections in this region, as it does not include ice sheet and mountain glacier contributions.

1 Introduction

The assessment of future risks of climate change requires not only mean projections but more importantly an estimate of the associated uncertainty ranges. Thus, probabilistic projections of climate systems for specific emission pathways are of great interest for the scientific community as well as for policy makers. Complex coupled Atmospheric-Ocean General Circulation Models (AOGCMs) are generally too computationally intensive to provide such probabilistic assessments with large ensembles of runs. This gap can be filled by models of reduced complexity that are able to emulate complex model output.

In this study we present such a reduced complexity model for the Atlantic Meridional Overturning Circulation (AMOC). One key component of this circulation is the formation of deepwater in the Nordic Seas and in the sub-polar North Atlantic that can be substantially hindered by a surface freshening in these regions. Anomalous freshwater flux into the North Atlantic has led to a shutdown of the circulation in a variety of coupled climate models (Rahmstorf et al., 2005). Furthermore, there is evidence that the AMOC has undergone abrupt changes during the last glacial period (McManus et al., 2004). A complete cessation of the circulation would cause strong cooling, reduced precipitation and substantial shifts of wind patterns in northern Europe (Vellinga and Wood, 2002, 2007; Laurian et al., 2009). Simulations further suggest that an AMOC collapse causes an increase of sea-level around European and North American coast lines by up to 1 m (Levermann et al., 2005; Landerer et al., 2007) and would have strong impacts on the ecosystem of the Atlantic Ocean (Schmittner, 2005). However, in the Fourth IPCC Assessment Report (AR4) none of the participating

Correspondence to: C. F. Schleussner
(schleussner@pik-potsdam.de)
models showed such an AMOC collapse in the 21st century, but all exhibited a weakening of the AMOC with a large ensemble spread (Meehl et al., 2007) ranging from almost no to a 50% reduction in volume flux. In view of this large uncertainty, an assessment of the impacts connected to a gradual decline of the AMOC in the 21st century appears to be rather difficult.

Probabilistic projections of the AMOC behaviour under global warming scenarios have been performed in a number of different modelling experiments of different complexities (e.g. Challenor et al., 2006; Collins et al., 2006), mainly focussing on the risk of an abrupt cessation of the AMOC (Challenor et al., 2010; Hargreaves et al., 2004) and using observational data for historical constraining of the model parameters (Urban and Keller, 2010; Knutti et al., 2003).

Here, we present a different approach towards a probabilistic assessment of the uncertainty in mean AMOC projections by integrating three qualitatively different multi-model AOGCM emulation experiments. First, a simple conceptual model is used to emulate AOGCM simulations that provide an ideal setting for stepwise constraining the model parameters (Gregory et al., 2005; Stouffer et al., 2006). These calibrated emulators, or surrogates to be more explicit, are then forced with probabilistic projections of the global mean surface air temperature from the reduced complexity carbon cycle-climate model MAGICC6 (Meinshausen et al., 2011a,b). The combination of the obtained AMOC mean weakening projections with results of a multi-model sea-level rise study by Yin et al. (2009) finally allows for probabilistic projections for the dynamical sea-level rise in the New York City region.

In the second section of this manuscript we will introduce the conceptual AMOC model used in this study. The calibration of this model to AOGCM output is detailed in Sect. 3. As shown in Sect. 4 we calibrated our conceptual model to the output of five different AOGCMs. Using this calibrated emulator model we present probabilistic projections of the AMOC mean behaviour under two Representative Concentration Pathway emission scenarios RCP3-PD and RCP4.5 in Sect. 5. The influence of additional Greenland melting is investigated in Sect. 6. Projections for the dynamical sea-level rise in the New York City region are presented in Sect. 7, before some conclusions are drawn in Sect. 8.

2 Model description

In order to capture the basic physical processes relevant for the future AMOC evolution we use the box model by Stommel (1961). It incorporates the linear relation between volume transport and meridional density difference $m \propto \Delta \rho$ that has been reported in a number of coarse resolution ocean simulations under very different forcing scenarios (e.g. Hughes and Weaver, 1994; Klinger and Marotzke, 1999; Griesel and Morales-Maqueda, 2006; Schewe and Levermann, 2010). The box model’s simplicity further allows a calibration with a minimal number of free parameters. As we will show in Sect. 3, the design of a multi-model study on AMOC-stability presented in Gregory et al. (2005) and Stouffer et al. (2006) can be related to the free parameters in the Stommel model and thereby be used to constrain their values.

The Stommel model was used in a variety of studies investigating the stability of the AMOC (e.g. Rahmstorf, 1996; Dijkstra et al., 2004; Guan and Huang, 2008; Drijfhout et al., 2010) or combined socio-economic impacts (Zickfeld and Bruckner, 2008). It does, however, not account for other driving mechanisms of the AMOC (Kuhlbrodt et al., 2007) such as Southern Ocean winds (Toggweiler and Samuels, 1998). This clearly limits the applicability of the model, since it was recently shown that pycnocline dynamics such as those introduced by Gnanadesikan (1999) are necessary to capture the full AMOC dynamics in a coarse resolution model (Levermann and Fürst, 2010). Here, we argue that the box-model can nonetheless emulate mean AMOC behaviour far away from a potential threshold in capturing the first-order baroclinic response to surface heat- and freshwater flux anomalies especially for time scales up to the year 2100.

In our study we follow the emulation approach of Zickfeld et al. (2004), who applied a Stommel model as an emulator to an earth system model of intermediate complexity. In their study, however, they aimed to emulate the threshold behaviour of the AMOC and thus used long-term hysteresis experiments for their calibration. The model used in our study (Fig. 1) has two boxes, one northern box representing the deep convection regions in the North Atlantic north of 45° N and one comprising the tropical and southern Atlantic.

The meridional volume transport m between the two boxes is determined by

$$m = k \left[\beta S - \alpha \Delta T \right],$$

where S is salinity, ΔT is temperature difference between the two boxes, and β and α are the expansion coefficients. Atmospheric forcing via a freshwater transport between the boxes and a temperature coupling with the haline extension is also included.

![Fig. 1. Schematic view of our conceptual two box model for the Atlantic Meridional Overturning Circulation.](image-url)

3 Calibrating the emulator

The calibrated emulator model was used to emulate AOGCM simulations that provide an ideal setting for stepwise constraining the model parameters (Gregory et al., 2005; Stouffer et al., 2006). These calibrated emulators, or surrogates to be more explicit, are then forced with probabilistic projections of the global mean surface air temperature from the reduced complexity carbon cycle-climate model MAGICC6 (Meinshausen et al., 2011a,b). The combination of the obtained AMOC mean weakening projections with results of a multi-model sea-level rise study by Yin et al. (2009) finally allows for probabilistic projections for the dynamical sea-level rise in the New York City region.

4 Designing the multi-model study

In Sect. 3, we presented a scenario for calibrating the emulator model to a variety of AOGCMs. Here, we show how to design a multi-model study on AMOC-stability and characterizing the model parameters. A multi-model ensemble of AMOC emulators was defined, consisting of the calibrated emulator for the New York City region and an ensemble of AMOC emulators that was used to simulate the AMOC in different parts of the Atlantic Ocean.

5 Projecting the dynamical sea-level rise

Projections of the dynamical sea-level rise in the New York City region are presented in Sect. 7. Before some conclusions are drawn in Sect. 8.
where k is a proportionality constant, which will be used to tune the box model to different AOGCMs, $\Delta S = S_2 - S_1$ being the salinity difference and $\Delta T = T_2 - T_1$ being the temperature difference between the two boxes, $\alpha = 1.7 \times 10^{-4}$ K$^{-1}$ the thermal and $\beta = 8 \times 10^{-4}$ psu$^{-1}$ the haline expansion coefficient. Atmospheric forcing via a freshwater transport between the boxes and a temperature coupling with the surrounding is applied. This approach results in a set of four ordinary differential equations:

$$\dot{T}_1 = \frac{m}{V_1} (T_2 - T_1) + \lambda (T_1^* - T_1)$$ (2)

$$\dot{T}_2 = \frac{m}{V_2} (T_1 - T_2) + \lambda (T_2^* - T_2)$$ (3)

$$\dot{S}_1 = \frac{m}{V_1} (S_2 - S_1) + \frac{S_0 F}{V_1}$$ (4)

$$\dot{S}_2 = \frac{m}{V_2} (S_1 - S_2) - \frac{S_0 F}{V_2}$$ (5)

where $S_0 = 35$ psu is the reference salinity and V_1 and V_2 are the box volumes. T_1^* and T_2^* are reference temperatures in the absence of oceanic heat transport, representing the atmospheric thermal forcing of the ocean, λ is the thermal coupling constant and F the freshwater transport between the boxes that incorporates both atmospheric moisture transport and oceanic eddy and gyre circulation transport.

Just considering temperature and salinity differences between the northern and the southern box instead of absolute values, Eqs. (2)–(5) can be rewritten as

$$\Delta \dot{T} = -m V_{\text{eff}} \Delta T - \lambda \Delta T + \lambda \Delta T^*$$ (6)

$$\Delta \dot{S} = -m V_{\text{eff}} \Delta S - F S_0 V_{\text{eff}},$$ (7)

where V_{eff} is the effective volume $V_{\text{eff}} = \frac{V_1 + V_2}{V_1 V_2}$. Combining Eqs. (6) and (7) with Eq. (1) yields:

$$\Delta \dot{T} = k \alpha V_{\text{eff}} (\Delta T)^2 - k \beta V_{\text{eff}} \Delta T \Delta S - \lambda \Delta T + \lambda \Delta T^*$$ (8)

$$\Delta \dot{S} = k \beta V_{\text{eff}} \Delta T \Delta S - k \alpha V_{\text{eff}} (\Delta S)^2 - F S_0 V_{\text{eff}}.$$ (9)

As found for regional changes in surface air temperatures (e.g. Mitchell, 2003; Giorgi, 2008), we assume that our reference temperature difference scales linearly with δT_{glob}:

$$\delta (\Delta T^*) = \Delta T_0^* + p \delta T_{\text{glob}},$$ (10)

where p is the temperature forcing coefficient and ΔT_0^* the equilibrium temperature difference. Furthermore, we assume that the freshwater transport F into the northern box can be approximated linearly (Manabe and Stouffer, 1994; Rahmstorf and Ganopolski, 1999) by introducing a model specific hydrological sensitivity h:

$$\delta F = F_0 + h \delta T_{\text{glob}}.$$ (11)

Thus, the temporal evolution of AMOC strength m can be expressed as a function of global mean temperature change δT_{glob}. The equilibrium freshwater flux F_0 mainly influences the equilibrium overturning, which can ultimately be adjusted by the proportional constant k (compare Eq. 1). We therefore set F_0 for all models to 0.014 Sv according to Zickfeld et al. (2004). Thus, the number of adjustable parameters is limited to six: k, V_{eff}, λ, ΔT_0^*, p, and h. The calibration procedure of this set of parameters and the associated data sets are described in the following section.

3 Calibration data

In order to calibrate our conceptual model we use results from a related multi-model study on AMOC-stability presented in Gregory et al. (2005) and Stouffer et al. (2006). In the latter, an artificial freshwater flux of 0.1 Sv is applied for 100 years in the Northern North Atlantic and the transient weakening of the AMOC as well the recovery is modelled for 200 years. This type of experiment with a temporal external forcing is particularly suitable to calibrate our emulation model to initial climate conditions by tuning k, V_{eff}, λ, and ΔT_0^*.

In Gregory et al. (2005) the transient impact of global warming on the AMOC is investigated. For this purpose, not only results of a 1 % CO$_2$ quadrupling scenario are presented, but also the impacts of associated changes in heat flux and freshwater transport on the AMOC are investigated separately. Two additional transient experiments are performed in this study: one changing the atmospheric heat budget according to the warming scenario with freshwater fluxes prescribed to the control experiment and a second one which prescribes the freshwater fluxes as in the warming experiment but keeping CO$_2$-concentrations and thus the heat fluxes constant. The constant freshwater flux experiment is used here to determine AOGCM-specific temperature scaling coefficient p and the constant heat flux experiment to calibrate the hydrological sensitivity h. Finally, the fully combined transient run is used to validate our calibration as shown in Sect. 4.

The five AOGCMs that participated in both multi-model studies and that we used for our emulation approach are listed in Table 1. Also the HadCM3 AOGCM by the Hadley Centre for Climate Prediction and Research participated in both studies, but this model shows a large overshoot of the AMOC strength after recovery from the freshwater perturbation in Stouffer et al. (2006). This overshoot is dominated by a convective release of subsurface heat as reported in Mignot et al. (2007). Such changes in convection and the associated vertical thermal structure in the ocean can not be captured by the Stommel model, which is why we excluded the HadCM3 model from this study.
Table 1. List of the emulated AOGCMs.

<table>
<thead>
<tr>
<th>Model:</th>
<th>Institute</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFDL_R30</td>
<td>Geophysical Fluid Dynamics Laboratory, USA</td>
<td>Delworth et al. (2002)</td>
</tr>
<tr>
<td>MRI_CGCM2.3</td>
<td>Meteorological Research Institute, Japan</td>
<td>Yukimoto and Noda (2002)</td>
</tr>
<tr>
<td>ECHAM5/MPI-OM</td>
<td>Max Planck Institute for Meteorology, Germany</td>
<td>Jungclaus et al. (2006a)</td>
</tr>
<tr>
<td>MIROC3.2</td>
<td>University of Tokyo, Japan</td>
<td>Hasumi and Emori (2004)</td>
</tr>
<tr>
<td>NCAR_CCSM2.0</td>
<td>National Center for Atmospheric Research, USA</td>
<td>Kiehl and Gent (2004)</td>
</tr>
</tbody>
</table>

4 Calibration of the conceptual model to AOGCM overturning behaviour

As discussed above, the equilibrium state of our simple model is determined by four parameters, k, V_{eff}, λ, and ΔT_{0}^\ast. To calibrate this parameter-set to the AOGCM outputs, the same freshwater perturbation experiment as performed with the AOGCMs (see data Sect. 3) was computed with our emulation model and the parameter-set was adjusted to reproduce each AOGCM output (Table 2). The parameter adjustment was done by a visual comparison of model output and reference data. This allows to pay special attention on the reproduction of dynamical key elements such as the turning point or the saturation dynamic while neglecting superposed oscillation dynamics not covered by the model physics, which is difficult to achieve using automated numerical optimisation methods. It is important to note that the parameter-sets were validated independently with different sensitivity experiments as it will be shown below.

The AOGCM output (thin lines) and our emulated paths (thick lines) are presented in Fig. 2a. Starting values were taken from Zickfeld et al. (2004). The atmospheric coupling parameter λ varies by more than one order of magnitude between the models (Table 2), which emphasises the dominant role of heat fluxes in the global warming experiments in line with Gregory et al. (2005). However, the parameter values k, V_{eff}, λ, and ΔT_{0}^\ast do not allow for more than a qualitative interpretation.

After the calibration to the equilibrium response the temperature scaling coefficient p and the hydrological sensitivity h are determined. In Gregory et al. (2005) the haline and thermal contributions to the AMOC weakening were separated, which can be used to independently determine the two parameters (Table 2). The thermal case, a scenario with a compounded 1% per year increase in the CO$_2$ concentration with freshwater fluxes prescribed as in the control experiment, is shown in Fig. 2b. To determine the haline contribution the CO$_2$-concentration is held constant and the time-varying freshwater flux of the warming scenario is applied (Fig. 2c). Please note that the NCAR CCSM2.0 model shows a nearly constant atmospheric freshwater transport and has therefore a near-zero hydrological sensitivity, which is captured by our emulation.

To test our calibrated conceptual models we emulated a compounded 1% per year CO$_2$ concentration increase scenario and compared it with the reference experiment from Gregory et al. (2005). As shown in Fig. 3 our calibrated model outcome (thick line) is able to reproduce the AOGCM outcome (thin line) over the given time scale that corresponds to a warming below 3°C in all models. We will use this calibrated emulation model in the next section to emulate low emission scenarios. This can be considered as an interpolation – we will not extrapolate to high emission scenarios, since these are not reached in the simulations used for the calibration and will push the system closer or beyond to the Stommel threshold. The Stommel equilibrium threshold is about 3°C warming for our model ensemble.

As apparent in Fig. 2 AMOC behaviour differs strongly across the different emulated AOGCMs. The equilibrium AMOC strength ranges from 15 Sv for the ECHAM5/MPI-OM model to 25 Sv for GFDL_R30 and also the transient response under the applied forcing differs significantly. Again the difference is highest between the GFDL_R30 model and the ECHAM5/MPI-OM: the first shows a strong weakening when additional freshwater forcing is applied and a rapid recovery afterwards, whereas the latter shows a much slower recovery that is not fully completed within the following 100 years. The uncertainty associated with single emulation parameters of the different models is thereby much smaller than the inter-AOGCM spread. Thus, we account for the major parametric uncertainty component when assuming all five emulator configurations obtained here as equally likely representations of the AMOC.

5 Emulating the overturning under global warming scenarios

In order to project the mean AMOC behaviour under global warming we combine each calibrated conceptual model (representing the AMOC behaviour of different AOGCMs) with the probabilistic temperature evolutions as obtained from an historically constrained MAGICC6 version (Meinshausen et al., 2009) for future RCP scenarios.

More specifically, we use 600 random drawings out of a 82-dimensional joint parameter distribution, randomly combined with 10 emulations of C4MIP carbon cycle response...
Fig. 2. The results of the calibration procedure, the thin line represents the AOGCM output, the thick line the best fit results of our emulation. (a) The freshwater hosing experiment by Stouffer et al. (2006), where 0.1 Sv are artificially added in the Northern North Atlantic for 100 years starting in year 1. (b) The transient change in the AMOC strength as presented in Gregory et al. (2005) for a scenario with a compounded 1 % per year increase in the CO$_2$ concentration, while the freshwater fluxes are kept constant. (c) The same scenario as in (b), but with constant CO$_2$-concentrations, whereas the freshwater fluxes of the full transient scenario are applied.

characteristics (Friedlingstein et al., 2006), to project global-mean temperatures. Results for the harmonised emissions scenarios of RCP3-PD and RCP4.5 are shown in Fig. 4b. We then combine all 600 realisations with each of our five models leading to 3000 different AMOC mean pathways that are considered equally likely. In order to stay within the calibrated range of temperature and freshwater changes, we performed projections only for these low scenarios RCP3-PD and RCP4.5.

Even though the thermal and haline contributions are very different between the five different models (compare the temperature scaling coefficient p and the hydrological sensitivity h in Table 2), the relative AMOC reduction under global warming is similar. For the RCP3-PD scenario the ensemble median (Fig. 4a blue curve) shows a median weakening of about 11 % with respect to the year 2000 with a 50 % constrained range between 9 and 14 %. Note that this constrained range comprises the uncertainty in the temperature projections and the ensemble spread. The RCP4.5 scenario results in a stronger weakening of about 22 % in the five model ensemble (Fig. 4b red curve) with a 50 % constrained range between 18 and 24 %. The inter-AOGCM spread for the RCP4.5 scenario is about 6 % (compare Fig. S1 in the Supplement), which is the major uncertainty component.
compared to the uncertainty of the individual model parameters. Our results are in very good agreement with a historical constrained Bayesian model study by Urban and Keller (2010), where a weakening of 17% is projected for a 21st century warming of 1.5 K.

6 Accounting for meltwater influx from Greenland

The AOGCM simulations of the CO2 quadrupling scenario used for calibration do not account for possible meltwater run-off from Greenland, but since we calibrated our model with absolute freshwater fluxes (see the calibration Sect. 4), we can now additionally investigate the effect of Greenland melting on the AMOC within the calibrated range of our model. The amount of Greenland meltwater run-off is one of the major sources of uncertainty e.g. in projections of global sea-level rise until 2100 (Gregory and Huybrechts, 2006). In particular the role of outlet glacier melting remains unclear. Recent findings suggest a strong acceleration of this melting in Southern Greenland (e.g. Rignot et al., 2010, and references therein). Pfeffer et al. (2008) assessed the maximum ice discharge from Greenland through kinematic constraints. In their assessment the total Greenland contribution by 2100 is projected to be 16.5 cm for low-range sea-level rise (SLR) scenarios, for which they assume a doubling in the Greenland outlet glacier velocities within the next decade.

Graversen et al. (2010) found 17 cm to be an upper bound using a dynamical ice-sheet model. Given these estimates we applied an additional freshwater forcing corresponding to a contribution of Greenland to global sea-level rise by 2100 of 10, 16.5 and 20 cm. Following Rahmstorf and Ganopolski (1999) we assumed a linear increase in the meltwater flux with global mean temperature change, which results in maximum freshwater fluxes of 14 mSv, 23 mSv and 28 mSv for the different SLR-contributions between 2090 and 2100.

Figure 5 shows the probabilistic projected ensemble medians for the RCP3-PD (left) and RCP4.5 (right) emission scenarios and the different Greenland freshwater forcings. The additional weakening with regard to the control run (red curve) is similar for both emission scenarios (4 % and 9 % for RCP3-PD and 4.5 % and 10 % for RCP4.5 and 10 and 20 cm, respectively), even though the absolute AMOC weakening is much stronger in the RCP4.5 scenario. Similar experiments have been performed by Jungclaus et al. (2006b), who found an additional AMOC weakening of 5 % by 2100 for the A1B emission scenario and 10 cm SLR contribution in the MPI/ECHAM5 AOGCM.

Despite this good agreement, we would like to highlight the conceptual nature of our experiment. In reality the Greenland meltwater flux is of course not uniformly applied over the whole northern North Atlantic and therefore the interaction with horizontal circulations can not be neglected (Jungclaus et al., 2006b). Recent findings even suggest that the subpolar gyre in the North Atlantic shows strong nonlinear behaviour with regard to regional freshwater forcings (Levermann and Born, 2007), probably influencing the AMOC behaviour (Montoya et al., 2010).
of the full sea-level change in the area due to non-tectonic effects excluding contributions from Antarctica. We find a median DSLR of 4 cm for the RCP3-PD and 8 cm for the RCP4.5 scenario with a 50 % confined range of 2.8 to 5.7 and 5 to 11 cm, respectively. While the initial spread of ±0.5 cm reflects the uncertainty of the offset parameter b, the 2100 ranges are dominated by the inter-AOGCM spread with AOGCM specific parameter uncertainties being of minor importance. For the higher SRES A1B scenario Yin et al. (2009) report an AMOC slow-down of 41 % for the GFDL CM2.1 and a multi-model median dynamic sea-level rise of about 20 cm.

8 Conclusions

In this paper we expanded the idea of emulating complex model output by computationally efficient models of low complexity to the Atlantic Meridional Overturning Circulation and its behaviour under moderate global warming. In a conceptual approach we used a Stommel model consisting of two boxes and a simple atmospheric coupling to emulate AMOC dynamics. The transient model behaviour can be calibrated by a set of six parameters including hydrological sensitivity and a temperature scaling coefficient to account for changes in the atmospheric forcing in terms of global mean temperature change. We calibrated different versions of our conceptual model to represent the output of five AOGCMs that participated in the multi-model studies by Stouffer et al. (2006) and Gregory et al. (2005) and performed probabilistic projections of the AMOC slow-down by 2100 using probabilistic projections of the global mean temperature change for the RCP3-PD and the RCP4.5 emission pathways obtained by MAGICC6. In the five model ensemble median the AMOC weakened by 11 % for the RCP3-PD and by 22 % for the RCP4.5 scenario.

The calibration of our emulation models to AOGCM data was successful for the documented range until 2100 and low emission scenarios. However, there are numerous limitations of our simple model. Since we assumed a purely density driven AMOC with a volume transport that scales linearly.

Table 3. Results of a linear regression of DSLR vs. AMOC weakening (y = ax + b) for a AR4 model ensemble derived from SRES A1B scenario runs and for the grid-point closest to NYC from (Yin et al., 2009)

<table>
<thead>
<tr>
<th></th>
<th>a [cm Sv(^{-1})]</th>
<th>b [cm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFDL CM2.1</td>
<td>1.68 ± 0.08</td>
<td>3.30 ± 0.56</td>
</tr>
<tr>
<td>MIROC MEDRES</td>
<td>2.81 ± 0.14</td>
<td>1.95 ± 0.62</td>
</tr>
<tr>
<td>MPI ECHAM5</td>
<td>2.74 ± 0.26</td>
<td>2.63 ± 0.65</td>
</tr>
<tr>
<td>IPSL CM4</td>
<td>2.58 ± 0.15</td>
<td>2.32 ± 0.67</td>
</tr>
<tr>
<td>MIROC HIRES</td>
<td>1.45 ± 0.21</td>
<td>4.01 ± 0.59</td>
</tr>
</tbody>
</table>

Associated with an AMOC weakening are major changes in the sea-level patterns in the Atlantic, particularly a distinct rise in the North Atlantic (Levermann et al., 2005). While dynamic sea-level rise (SLR) is not spatially uniform and and might be even negative in the subpolar gyre region (Landerer et al., 2007), it is robustly projected to be especially pronounced at the north-eastern coast of North America over an ensemble of the 12 AR4 models that perform best reproducing present-day sea-level (Yin et al., 2010). Furthermore, Yin et al. (2009) report a linear dependence of the dynamic sea-level rise (DSL) in the New York City region on the AMOC weakening and here we utilize this finding to provide probabilistic projections of this rise. The CMIP-3 model ensemble analysed in this study and associated linear regression results are shown in Table 3. The slopes of the different models scatter around 2 cm DSL per Sv AMOC weakening, which compares well to observational data (Bingham and Hughes, 2009).

To account for the uncertainty of the linear regression parameters shown in Table 3, we randomly picked a value out of a Gaussian distribution with a standard deviation of the parameter uncertainty and combined it for each of the five models with our 3000 AMOC representations. Thus, we provide probabilistic projections of the mean dynamic sea-level rise in the New York City region (Fig. 6).

While Greenland melting will have significant effect on global sea-level, its impact on regional sea-level along the North American east coast has been shown to be small due to gravitational and rotational adjustments (Mitrovica et al., 2001; Kopp et al., 2010). Thus, Fig. 6 represents an estimate
with the density gradient between the boxes, the Stommel box model shows a bistability with regard to freshwater forcing and strong nonlinear behaviour close to the bifurcation point that can not be identified in the AOGCM output data.

The conceptual model omits low latitude upwelling and southern ocean winds as important drivers of the AMOC (Toggweiler and Samuels, 1995). Including them leads to a much more complex dependence of the meridional volume transport on the density gradient (Levermann and Furst, 2010), but could help to extend our approach also to high emission – high warming scenarios (Furst and Levermann, 2012). This model limitation does not effect the results presented in this work, since all projections performed are interpolations inside the calibration range.

Our calibration to absolute freshwater fluxes allowed us to investigate the impact of meltwater fluxes from Greenland on the AMOC, an aspect not included in the reference AOGCM experiments. We performed probabilistic projections for three different freshwater forcings that would correspond to 10, 16.5 and 20 cm Greenland contribution to SLR by 2100 and found additional reductions of the AMOC strength of 4, 7.5 and 9 % for the RCP3-PD scenario and slightly higher for the RCP4.5. Being aware of the limitations of these projections that do not account for the dynamics of the horizontal circulation in the North Atlantic, they can nevertheless hold as a first estimate of the effect of Greenland melting on the AMOC until the end of the century.

Using a multi-model sea-level rise study by Yin et al. (2009), we were able to extend our probabilistic projections to investigate the impact of the AMOC slow-down on the dynamic sea-level rise in the New York City region as an example of an impact assessment. We find 4 cm of dynamic sea-level rise for the RCP3-PD and 8 cm for the RCP4.5 scenario. This probabilistic projection of dynamic sea-level rise is an example for the potential of a modular approach in climate system projections within the limits of interpolation. Simulations performed with a climate model of intermediate complexity show a global steric sea-level rise in the 21st century of about 20 cm for the RCP3-PD and 28 cm for the RCP4.5 emission pathway with regard to the year 2000 (Schewe et al., 2011), which is close to the upper 95 % percentile provided in IPCC AR4 for the similar SRES B1 scenario (Meehl et al., 2007). These numbers combine to a dynamic and steric sea-level rise of 24 and 36 cm in the New York City region (Fig. 6, inlay).

Remarkably, the combined steric and dynamic sea-level rise decelerates already in the 21st century for the lowest emission pathway RCP3-PD (compare Fig. 6, inlay), which is consistent with the evolution of the global mean temperature that reaches its maximum around 2060 (Fig. 4b). Nevertheless, sea-level responds slowly to global warming and continues to rise until the 23rd century for this emission pathway (Schewe et al., 2011).

In summary, we presented a probabilistic assessment of the future AMOC behaviour using a calibrated conceptual model and global mean temperature data for the RCP3-PD and RCP4.5 emission scenarios. Additionally, we extended our modular approach to investigate the influence of Greenland meltwater fluxes on the AMOC and to project dynamic sea-level rise in the New York City region. Our finding of 24 cm combined dynamic and steric sea-level rise for the RCP3-PD emission pathway can be interpreted as a lower bound for the total sea-level rise at the New York City coastline until 2100.

Supplementary material related to this article is available online at:

Acknowledgements. We wish to thank Sarah Raper and Jonathan Gregory, who kindly provided the data-sets used to calibrate our emulation models. This work was supported by the Deutsche Bundestiftung Umwelt and the German National Academic Foundation. M. M. and K. F. were supported by the Federal Environment Agency for Germany (UBA) under project UFOPLAN FKZ 370841103.

Edited by: K. Keller

References

Friedlingstein, P., Cox, P., Betts, R., Bopp, L., von Bloh, W., Bovin, V., Cadule, P., Doney, S., Eby, M., Fung, I., Bala, G., John, J., Jones, C., Joos, F., Kato, T., Kawamiya, M., Knorr, W., Lindsay, K., Matthews, H., Raddatz, T., Rayner, P., Reich, C., Roeckner, E., Schnitzler, K.-G., Schnur, R., Strassmann, K., Weaver, K., Yoshikawa, C., and Zeng, N.: Climate Carbon Cycle

