Tracking slabs beneath northwestern Pacific subduction zones

Yu Jeffrey Gu *, Ahmet Okeler 1, Ryan Schultz 1

Department of Physics, University of Alberta, Edmonton, AB, Canada, T6G2E1

A R T I C L E I N F O

Article history:
Received 11 January 2011
Received in revised form 12 March 2012
Accepted 14 March 2012
Available online 18 April 2012

Editor: P. Shearer

Keywords: Highly reflective zone SS precursor Northwestern Pacific Stagnant slab Mantle transition zone Slab penetration

A B S T R A C T

This study uses the amplitudes of bottom-side reflected shear waves to constrain the morphology and dynamics of subducted oceanic lithosphere beneath northwestern Pacific subduction zones. Across Honshu arc, the 410- and 660-km seismic discontinuities are detected at the respective depths of 395 ± 5 and 685 ± 5 km within the Wadati–Benioff zone. Their topographies are negatively correlated along slab dip, showing the dominant effect of temperature on the olivine phase changes within the upper mantle transition zone. The base of the upper mantle shows broad depressions as well as localized zones of shallow/average depths beneath Korea and northeast China. The 15 km peak-to-peak topography west of the Wadati–Benioff zones suggests that the stagnant part of the subducted Pacific plate is not as flat as previously suggested. Eastward slab ‘pile-up’ is also possible at the base of the upper mantle. Across southern Kuril arc, the shear wave reflection coefficients of major olivine phase boundaries fall below 5% within the Wadati–Benioff zone. The apparent reflection gaps and the spatial connection between a strong reflector at ~900 km depth may imply 1) possible compositional variations at the top and bottom of the transition zone and 2) substantial mass/heat flux across the 660-km seismic discontinuity. We also identify strong reflectors within the subducted oceanic lithosphere at mid transition zone depths. The depths and strengths of these reflectors are highly variable between Honshu and southern Kuril islands.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The convergent boundaries between the Pacific, Amurian, and North American plates are among the fastest destruction zones of old oceanic domains. The subduction process in this region initiated prior to the Eocene epoch (>55 Ma) (Fukao et al., 2001; Northrup et al., 1995) and continues to accommodate regional differential plate motions at the present-day rates of 8–9.5 cm/yr (Bird, 2003; DeMets et al., 1990; Seno et al., 1996). The subducted old oceanic lithospheres are colder than the surrounding mantle, hence are manifested in high velocity anomalies in seismic tomographic images (e.g., Fukao et al., 1992, 2001; Gorbatov and Kennett, 2002; Gorbatov et al., 2000; Grand, 2002; Kárason and van der Hilst, 2000; Lebedev and Nolet, 2003; Li and van der Hilst, 2010; Obayashi et al., 2006; Romanowicz, 2003; van der Hilst et al., 1991, 1997; Widiyantoro et al., 1999; Zhao, 2004; Zhao and Ohtani, 2009). The inferred morphologies and depths of subducted oceanic lithospheres (from here on, ‘slabs’) vary significantly among the various northwestern segments of the Pacific plate boundary. Parts of the Pacific slab exhibit strong deformations near the base of the upper mantle, e.g., ‘pile-up’ or stagnation (Fukao et al., 1992, 2001) by as much as 800–1000 km (Huang and Zhao, 2006; Obayashi et al., 2006), while others favor continued descent into the lower mantle (e.g., Fukao et al., 2001, 2009; Gorbatov and Kennett, 2002; Obayashi et al., 2006). Both modes of slab deformation have been corroborated by recent geodynamical calculations that incorporated trench migration and rollback history (Billen, 2010; Nakakuki et al., 2010; Tagawa et al., 2007; Zhu et al., 2010). The interplay between high and low velocities in connection with descending slabs, multi-scale advection (Korenaga and Jordan, 2004; Obayashi et al., 2006) and transition zone slab dehydration (An et al., 2009; Duan et al., 2009; Feng and An, 2010; Lebedev and Nolet, 2003; Li and van der Hilst, 2010; Obayashi et al., 2006; Priesley et al., 2006; Zhao, 2004; Zhao et al., 2007; Zhao and Ohtani, 2009) is inductive to strong gradients in temperature and composition at depths below 250 km.

In addition to seismic tomography, amplitudes and arrival-times of reflected/converted seismic waves from mantle interfaces are effective measures of changes in rock elastic properties. Slab geometry and transition zone thickness are strongly influenced by mineralogical phase transformations of olivine to wadsleyite near 400 km, wadsleyite to ringwoodite near 520 km, and ringwoodite to perovskite + magnesiowustite near 660 km (Akaogi et al., 2007; Bina, 2003 and references therein; Helffrich, 2000; Ito and Stixrude, 1992; Katsura and Ito, 1989). The endothermic phase change at the base of the upper mantle increases local buoyancy forces, which can deflect subducting slabs and cause stagnation (Billen, 2008, 2010; Christensen, 1995; Fukao et al., 2009). Assuming an olivine-rich mantle composition and thermodynamic equilibrium, low temperatures...
from a descending slab are expected to increase the thickness of the transition zone. In fact, broad depressions of the 660-km discontinuity beneath the northwestern Pacific region (e.g., Revenaugh and Jordan, 1991; Shearer and Masters, 1992; Vidale and Benz, 1992) have been widely regarded as crucial observational support for the laboratory experiments.

Among the various observations, bottom-side SH reflections from mantle interfaces known as SS precursors (Shearer, 1991; Shearer and Masters, 1992) played a key role in the determination of mantle discontinuity depths. Due to path similarities, the relative times and amplitudes of SS and its precursors are sensitive to reflection characteristics beneath the midpoint of the ray path (Fig. 1A). In comparison with converted waves (e.g., Lawrence and Shearer, 2006, 2008; Tauxin et al., 2008; Rondenay, 2009), seismic imaging based on SS precursors offers more complete global data coverage (Deuss and Woodhouse, 2002; Flanagan and Shearer, 1998; Gossler and Kind, 1996; Gu and Dziewonski, 2002; Gu et al., 1998; Shearer, 1990, 1991, 1993; Shearer and Masters, 1992; see Deuss, 2009 for review), but their resolving powers at lengths scales appropriate for slabs have been questioned (Chaljub and Tarantola, 1997; Neele et al., 1997; Shearer et al., 1999). With few exceptions (e.g., Heit et al., 2010; Schmerr and Garnero, 2007), comparisons between shear wave reflectivity and velocity near subduction zones generally emphasized low-degree spherical harmonics (e.g., Gu et al., 2003; Houser and Williams, 2010; Houser et al., 2008; Lawrence and Shearer, 2006; Romanowicz, 2003) and remained qualitative at local length scales.

This study presents new evidence of stagnating and lower-mantle penetrating slabs based on a dense regional dataset of SS precursors and effective imaging techniques. Through detailed comparisons of reflection amplitude and high-resolution seismic velocity, we aim to provide a self-consistent, three-dimensional (3D) snapshot of the mantle beneath the northwestern Pacific region. For brevity the following sections will refer to the upper mantle transition zone as MTZ and the associated seismic discontinuities as the 410, 520 and 660.

2. Data and method

In this study we utilize all available broadband, high-gain recordings of earthquakes prior to 2008, a dataset currently managed by the IRIS Data Management Center and contributed by GDSN, IRIS, GEOSCOPE and many other temporary deployments. We only retain shallow (depth<75 km) events to minimize the effect of depth phases, and adopt a magnitude cutoff of Mw>5 to ensure the availability of source mechanisms from GCMT (Dziewonski et al., 1981) for synthetic seismogram computations. We restrict the epicentral distance range to 100°–160° to minimize known waveform interferences from topside reflection and ScS precursors (An et al., 2007; Schmerr and Garnero, 2007), and apply a Butterworth band-pass filter with corner periods at 12 s and 75 s. We further eliminate traces with signal-to-noise ratio lower than 3.0 (Gu et al., 2003) and align the resulting traces on the first major swing of SS. A constant time shift is subsequently added to each trace based on model predicted SS-S520S times to account for variations in crust thickness (Bassin et al., 2000) and surface topography (ETOP05 database) (e.g., Gu et al., 2003). A reference reflection at 520 km offers an effective compromise between reflections at the 410 and 660 despite a potential depth error of 3–5 km for structures 200–400 km away from the MTZ. Finally, each time sample preceding the reference SS time is mapped to a crustal/mantle depth (e.g., Gu et al., 2008; Heit et al., 2010; Zheng et al., 2007) according to travel times predicted by

![Fig. 1.](image-url)
Fig. 2. Ray theoretical surface reflection points of 6014 high-quality SS precursors used in this study. The main tectonic elements, plate boundaries (Bird, 2003) and slab contours (Gudmundsson and Sambridge, 1998) are indicated by dashed lines and thin solid lines, respectively; the slab contours are taken at 50 km intervals from the trench. All SS bounce points represented by circles contribute to the construction of 3D reflectivity maps (see Fig. 3), while only solid circles are used in the examinations of four vertical Profiles A–D (see Fig. 4).
The former dataset potentially offers greater spatial resolution in the Pacific Northwest (Fukao et al., 2009). The depth-converted SS precursors show clear evidence of sub-horizontal reflectors within depth ranges of 120–180 km, 380–440 km and 630–700 km. The focus of this study is the MTZ and lower mantle where waveform complexities associated with SS side-lobes are negligible (e.g., Gu et al., 2003; Shearer, 1993). To ensure the robustness of the key observations, we estimate the un-

dependent oceanward from the Wadati–Benioff zone. The base of this anomaly, which is depressed beneath northern Honshu, which reduces the MTZ width to ~225-km along trench dip (see Fig. 4, Profile B). Further west, the reflectivity profiles shows a broad depression beneath Sea of Japan and Changbai hotspot. This mild depression zone overlaps with high P velocities near the base of the MTZ, but appears wider than that expected from 1+ % P velocities.

The high-velocity zone beneath Kuril arc (Fig. 4, Profile C) is more complex than those within the two southern profiles. Above-average P velocities extend to depths below 750 km along trench dip and across exceptionally weak 410 and 660 (hereafter, ‘reflection gap’) within the Wadati-Benioff zone. The base of this anomaly, which is interpreted as 0.3–0.5% P velocity perturbations, is underlain by an eastward dipping lower-mantle reflector at ~900 km depth (see also Fig. 3D) in the vicinity of the reflection gap. The strength of the 660 gradually increases toward Sikhote-Aline Mountains and effectively outlines the 1+ % P velocity zone in the lower half of the MTZ (see Fig. 4, Profile C). A southwest–northeast transect over the deepest part of the Wadati–Benioff zones (Fig. 4, Profile D) highlights the key reflectivity differences between Japan and Kuril subduction systems. South of Hokkaido corner, large-scale high-velocity structures are mainly
constrained to the MTZ. Despite slightly reduced amplitudes, the MTZ phase boundaries are laterally continuous and the base of the MTZ between Korea Strait and Sea of Japan shows 30+ km depressions relative to the global average. Across southern Kuril arc, however, the amplitude of the 660 falls below noise level within a localized lower mantle high-velocity zone. As suggested by Profile C, the base of the northward dipping high-velocity structure partially overlaps with a strong reflector at 900–930 km depths (see Fig. 4, Profile D).

A common link between Japan and Kuril subduction zones is the presence of reflectors within the MTZ (see Figs. 3B and 4). We identify a single HRZ with maximum amplitudes in excess of 6% at ~525 km within the Wadati–Benioff zones in the two southern profiles. Two distinct reflectors are further detected across southern Kuril arc in the depth ranges of 500–530 km and 580–600 km (see Fig. 4D), and their amplitudes increase in the northward direction.

4. Discussion and interpretations

The effectiveness of SS precursors in resolving local or regional length-scale structures has been underscored by recent studies of subduction zones (Heit et al., 2010; Schmerr and Garnero, 2007), hot mantle plumes (Cao et al., 2011; Gu et al., 2009; Schmerr and Garnero, 2006) and crust (Rychert and Shearer, 2009). Despite concerns over Fresnel zone size and shape (Chaljub and Tarantola, 1997; Neele et al., 1997), shear waves such as SS precursors are capable of recovering structures at length scales beyond their ‘nominal’ resolution, especially when waveform information is incorporated (Ji and Nataf, 1998; Mégnin and Romanowicz, 2000). Major HRZs reported in this study are minimally affected by moderate changes to the CMP sizes and shapes. For example, the semi-linear structure across northern Honshu Islands and large lateral-scale depressions west of the Hokkaido Corner are consistently captured by reflection
maps constructed based on CMP areas of 12 deg2 and 50 deg2 (Fig. 5), despite instabilities associated with limited data traces in smaller CMPs (Fig. 5A) and over-smoothing in the case of larger averaging areas (Fig. 5B). Our heuristically determined averaging area of 24 deg2 represents a reasonable compromise between image stability and resolution.

4.1. Average reflection amplitudes

The detectable ranges of amplitudes are 4–9% for S410S and 4–12% for S660S. The former range overlaps with the predicted values of ~8% from PREM (Dziewonski and Anderson, 1981) and the global average of 6.7% from SS precursors (Shearer, 1996), but the latter range falls well short of 14% based on PREM (Shearer, 2000). These individual amplitude estimates are strongly affected by the strength of SS, the normalizing reference phase. For instance, the presence of attenuating low-velocity structures (e.g., Huang and Zhao, 2006; Lei and Zhao, 2005; Zhao, 2001; Zhao et al., 1995, 2010) could diminish SS and increase the relative amplitude of S660. Compositional variations associated with Al at the base of upper mantle (Deuss, 2009; Deuss and Woodhouse, 2002; Weidner and Wang, 1998, 2000) or Fe content (Agee, 1998; Akaogi et al., 2007; Inoue et al., 2010) are also known to broaden phase boundary widths and reduce precursor amplitudes. A more stable parameter is the amplitude ratio between the 410 and the 660 (e.g., Shearer, 2000), which we estimate to be within the range of 0.7–0.8. This value is slightly higher than the earlier estimates of 0.64–0.68 based on global SS precursors (Shearer, 1996) and regional ScS observations (Revenaugh and Jordan, 1991), though it is in poor agreement with that of PREM (0.5). A regionally sharp 410 (Ai and Zheng, 2003; Benz and Vidale, 1993; Jasbinsek et al., 2010; Melbourne and Helmberger, 1998; Neele, 1996; Vidale et al., 1995) is possible but requires a quantitative analysis of the waveforms, particularly those prior to phase equalization. Additionally, since the average observed topography on the 660 is 25–30% larger relative to the 410 (see Figs. 3 and 4), defocusing and energy loss due to incoherent stacking (Shearer, 2000) would be more severe for reflections from the 660.

4.2. Depth correlation of the 410 and 660

The depth-converted reflectivity profiles of this study offer new insights on the effect of mantle temperatures on the phase transition depths. For olivine-rich mantle compositions, the depths of the 410 and 660 should anticorrelate based on results of high-pressure laboratory experiments (e.g., Akaogi et al., 2007; Helmfrich, 2000; Inoue et al., 1998; Ita and Stixrude, 1992; Katsura and Ito, 1989) as well as high-frequency seismic observations in the northwestern Pacific region (e.g., Ai and Zheng, 2003; Collier et al., 2001; Li et al., 2000; Ramesh et al., 2005; Saita et al., 2002; Tonegawa et al., 2006; van der Meijde et al., 2005). However, global surveys of the spectral contents and amplitudes of these two phase boundaries have often attributed a locally thick MTZ to a highly deformed 660 at the base of the upper mantle (Flanagan and Shearer, 1998; Gu and Dziewonski, 2002; Gu et al., 1998, 2003; Houser et al., 2008). The depth of the 410 remains problematic in view of expected phase boundary behavior (e.g., Deuss, 2007; Du et al., 2006; Fee and Dueker, 2004; Gilbert et al., 2003; Gu and Dziewonski, 2002; Gu et al., 2003; Schmerr and Garnero, 2007; Tausz et al., 2008) and prompted additional assumptions involving MTZ velocity corrections (Deuss, 2007; Flanagan and Shearer, 1998; Gu et al., 2003; Houser et al., 2008; Schmerr and Garnero, 2006) and/or mechanisms predicated on extensive compositional variations (Deuss, 2007; Gu et al., 2009; Houser and Williams, 2010; Schmerr and Garnero, 2007).

Our migration results enable a careful examination of the correlation between temperature and discontinuity topography in the northwestern Pacific region. An excellent test case is Profile A in which both discontinuities are laterally continuous and exhibit strong topography (Fig. 6). The peak-to-peak depth variations of the 410 and 660 are approximately 30 km and 40 km, respectively, both exhibiting large deformation from the trench on to the deepest part of the Wadati–Benioff zone across southern Japan (Fig. 6A). A simple bin-to-bin correlation, which implicitly assumes vertical continuity of seismic velocities, yields a small positive correlation. To account for non-vertical structures following the slab dip (~30°, Gudmundsson and Sambridge, 1998), we revise the correlation analysis by introducing an offset such that the depth of the 410 at a given location is correlated with that of the 660 at a location ~200 km further inland. The ‘dip-corrected’ phase boundaries show a clear negative correlation in the vicinity of the slab (see Fig. 6A) that favors a thermal origin for the observed shape of the MTZ. The negative correlation benefits from an anomalously shallow 410 within the Wadati–Benioff zone, which is a notable departure from earlier findings of global time-domain analyses of SS precursors (e.g., Flanagan and Shearer, 1998; Gu et al., 2003).

4.3. Continuity of the 410

There have been considerable discussions of the existence of, and support for, a water/melt rich layer near the top of the MTZ (Frost and Dolejs, 2007; Inoue et al., 1995, 2010; Kohlstedt et al., 1996; Smyth and Frost, 2001; Wood, 1995). Wadsleyite has a strong capacity to accommodate hydroxyl (OH$^-$) and can store up to 3 wt.% H$_2$O.
Based on multiple cross-sections in South America, Schmerr and Garnero (2007) inferred a ‘melt lens’ from evidence of delayed and split/missing S410S east of the Nasca-South America convergent zone. A wide 410 reflection gap is corroborated by Contenti et al. (2012) based on SS precursors and the same imaging technique presented in this study, but the associated S410S waveforms from South America are much more complex than those shown in this study. If a fluid-rich layer exists atop the MTZ, its spatial scale, inflation/storage mechanism and/or chemistry (e.g., Richard and Iwamori, 2010) beneath the Pacific Northwest would most likely differ from those beneath Tonga and South America.

4.4. Slab stagnation and distortion

Subducted ocean basins in the western Pacific region have been known to deflect to a near-horizontal direction at the MTZ for nearly two decades (Fukao et al., 1992; Okino et al., 1989; van der Hilst et al., 1991). Since these early reports, ample evidence of slab stagnation (Fukao et al., 1992, 2001) has been provided by global and regional tomographic images (Fukao et al., 2001, 2009; Li and van der Hilst, 2010; Sugioka et al., 2010; Zhao and Ohtani, 2009), as well as by anomalous dip-angle variations in the distribution of intermediate-depth earthquakes (Chen et al., 2004). The conditions and characteristics of stagnant slabs were constrained further by recent numerical calculations that incorporated thermo-petrological buoyancy forces (Bina and Kawakatsu, 2010; Bina et al., 2001; Tetzlaff and Schmeling, 2000), rheology (Billen, 2008, 2010; Billen and Hirth, 2007) and plate history and rollback (Christensen, 2010; Nakakuki et al., 2010; Tagawa et al., 2007; Torii and Yoshioka, 2007; Zhu et al., 2010).

With the help of seismic velocities, the reflectivity information provided by our study can place crucial constraints on slab deformation at the base of the MTZ and the shallow lower mantle. Our observations suggest reduced topography on the 660 in the northward direction (see Profiles A and B in Fig. 4), which is consistent with earlier findings based on receiver functions (Niu et al., 2005) and postcursors of sSCS (Yamada et al., 2009). A ‘soft’ slab under the influence of trench migration and rollback may be possible beneath northeastern Honshu arc (Li et al., 2008). However, for the same region Li et al. (2008) detected little or no oceanward broadening of the 660 from high-resolution S to P converted waves. This result is inconsistent with the observed shift in this study between the high-velocity zone and the onset of the broad depression in the vicinity of the island arcs (see Figs. 4 and 6A). While resolution differences between SS precursors and receiver functions may play a role, the 100–300 km horizontal broadening of the 660 in the oceanward direction could be caused by slab ‘pile-ups’ at the base of MTZ.

A more intriguing observation from the two southern profiles is two distinct zones of large lateral scale depression: 1) near the Benioff zone than the target area in Zheng et al. (2007) and 2) in the western half of the stagnant slab (e.g., Fukao et al., 2009; Huang and Zhao, 2006). These two basins are nearly identical in shape, and the depth of the 660 between them is raised sharply to 655–660 km. By assuming a reference discontinuity depth of 670 km, we estimate the horizontal dimensions of the depression zones (Seg 1 and Seg 3) to be 350–450 km in Profile A (Fig. 7A) and 550–600 km in Profile B (Fig. 7B). The respective phase boundary elevations at the base of the MTZ.

A more intriguing observation from the two southern profiles is two distinct zones of large lateral scale depression: 1) near the Benioff zone than the target area in Zheng et al. (2007) and 2) in the western half of the stagnant slab (e.g., Fukao et al., 2009; Huang and Zhao, 2006). These two basins are nearly identical in shape, and the depth of the 660 between them is raised sharply to 655–660 km. By assuming a reference discontinuity depth of 670 km, we estimate the horizontal dimensions of the depression zones (Seg 1 and Seg 3) to be 350–450 km in Profile A (Fig. 7A) and 550–600 km in Profile B (Fig. 7B). The respective phase boundary elevations at the base of the MTZ.

A more intriguing observation from the two southern profiles is two distinct zones of large lateral scale depression: 1) near the Benioff zone than the target area in Zheng et al. (2007) and 2) in the western half of the stagnant slab (e.g., Fukao et al., 2009; Huang and Zhao, 2006). These two basins are nearly identical in shape, and the depth of the 660 between them is raised sharply to 655–660 km. By assuming a reference discontinuity depth of 670 km, we estimate the horizontal dimensions of the depression zones (Seg 1 and Seg 3) to be 350–450 km in Profile A (Fig. 7A) and 550–600 km in Profile B (Fig. 7B). The respective phase boundary elevations at the base of the MTZ.

The shape of the 660 raises new questions about the ‘flatness’ (Okino et al., 1989) of stagnant slabs. The observation of contention
is the average or shallow 660 between the two distinct basins, which implies a significant temperature/compositional gradient leading to the center of the stagnating slab segment. This observation is inconsistent with the broad depressions reported earlier based on seismic tomography (see Fukao et al., 2009 and references therein) and reflection depth/MTZ thickness imaging (e.g., Flanagan and Shearer, 1998; Gu et al., 1998, 2003; Houser et al., 2008; Lawrence and Shearer, 2006; Shearer and Masters, 1992). The amplitude of the 660 within this uplifted region (see Seg 3, Fig. 7A and B) is higher than the regional averages, which may be interpreted as a narrow ringwoodite to perovskite + magnesiowustite phase loop at temperatures above the geotherm. Formations of twin basins on the 660 are plausible according to geodynamical calculations of slab geometry that incorporated trench retreat (Christensen, 1996; Tagawa et al., 2007; Zhu et al., 2010) or temperature- and pressure-dependent viscosity (see Fig. 12 of Fukao et al., 2009; Karato and Wu, 1993). These calculations suggest a deep 660 at the slab piercing and MTZ re-entry points, between which the phase boundary remains nearly unperturbed (see Fig. 7A). While the horizontally oriented, lower-mantle slab segment in Fig. 7A (e.g., Christensen, 1996; Fukao et al., 2009; Tagawa et al., 2007) is not convincingly supported by our SS precursor observations, buckling (Bagly, 1982; Ribe et al., 2007) is plausible due to interactions between the tip of the descending slab and the viscous lower mantle (e.g., Kellogg et al., 1999; Obayashi et al., 2006). During these episodes, entrapped ambient mantle material could form isolated, higher-temperature pockets within a highly deformed stagnant slab. Trench migration and rollback history (Christensen, 1996; see Schmid et al., 2002 for the case of Farallon plate subduction), water (e.g., Huang and Zhao, 2006; Inoue et al., 1995, 2010; Kohlstedt et al., 1996; Litasov et al., 2006; Ohtani et al., 2001; Suetsugu et al., 2006; van der Meijde et al., 2003), grain-size reduction (e.g., Billen, 2010; Nakakuki et al., 2010), and possible separation of oceanic crust from the descending lithosphere (Hirose et al., 1999, 2005; Irifune and Ringwood, 1993; van Keken et al., 1996) could all contribute large internal gradients on the 660 within the ‘flat’ part of the slab.

4.5. Slab penetration beneath southern Kuril arc

The reflectivity structures shed new light on the long-standing debate about the depth of slab in the Pacific Northwest (Fukao et al., 1992; Fukao et al., 2001, 2009; van der Hilst et al., 1991; van der Hilst et al., 1997). While the vertical extent of slabs and the general style of mantle convection remain debated on the global scale, there is growing evidence of scattered and deformed slab material in the lower mantle (Bijwaard et al., 1998; Chang et al., 2010; Courtier and Revenaugh, 2008; Fukao et al., 2001, 2009; Li and van der Hilst, 2010; Obayashi et al., 2006; van der Hilst et al., 1997).

Among the various HRZs documented in this study, sub-MTZ anomalies in Profiles C and D present the best arguments for slab penetration into the lower mantle. The most visible change from central Honshu to southern Kuril arcs is the reflection amplitude reduction of both the 410 and the 660, highlighted by apparent reflection gaps in the northermost transect. These gaps coincide with the Wadati–Benioff zone of the Kuril slab (Fig. 7C) and their origins remain enigmatic. For instance, increasing Al content could broaden the depth range of garnet-to-perovskite transformation and influence olivine and pyroxene normative proportions near the base of the upper mantle (Gasparik, 1996; Weidner and Wang, 1998). This scenario is plausible when majorite garnet transforms to metastable ilmenite and, eventually, to Ca-perovskite (e.g., Weidner and Wang, 1998, 2000) in subduction zones. The presence of Al-bearing akimotoite could introduce further complexities, such as a high velocity layer or a steep velocity gradient, to mid MTZ depths at low temperatures (Gasparik, 1996; Wang et al., 2004). However, changes in Al content mainly impact mantle reflectivity structure under mid-to-lower MTZ pressure-temperature conditions (e.g., Tateno et al., 2005; Wang et al., 2004; Weidner and Wang, 2000), which fails to explain the weak 410 within the Kuril slab (see Fig. 4, Profile C and Fig. 7C). Alternatively, increasing Fe concentration could substantially broaden the phase loops of both olivine-wadsleyite and ringwoodite to perovskite + magnesiowustite transitions (Akaogi et al., 2007; Fiorenza et al., 2011; Inoue et al., 2010; Litasov et al., 2006), thus

Fig. 7. The observed depths of the 410 and 660 beneath Profiles A–C with interpretations. The undulations on the 410 and 660 have been exaggerated by a factor of 2 from the original observations presented in Fig. 4. The short dashed lines mark regions of low reflection amplitude and the white arrows indicate the dip of the Wadati–Benioff zones. The region shaded in blue shows 1% P velocity perturbations (Obayashi et al., 2006), and the regions shaded in green (see Profiles A and B) represent interpreted MTZ low-temperature regimes based on the observed SS precursor amplitudes of this study. Three distinct sub-regions at the base of the upper mantle are labeled Seg 1–3. Their dimensions are estimated based on a reference depth of 670 km and rounded to the nearest 50 km. In Fig. 7A, the region shaded in gray shows the shape of a stagnant slab from recent numerical simulations that consider temperature- and pressure-dependent viscosity (edited from Fig. 12 of Fukao et al., 2009 and Fig. 4 of Nakakuki et al., 2010).
reducing the reflection amplitudes of both discontinuities. Observational support for Fe enrichment in subduction zones (Agee, 1998; Deon et al., 2011) remains insufficient.

Water transported into the MTZ by slabs could potentially modify the impedance contrast, hence the visibility of a reflecting body (Fukao et al., 2009; Ichiki et al., 2006; Ohtani and Sakai, 2008; van der Meijde et al., 2003). Aided by the strong inclinations of wadsleyite and ringwoodite to retain water (Bercovici and Karato, 2003; Inoue et al., 1995; Kohlstedt et al., 1996; see Fukao et al., 2009 for review), a hydrous MTZ can simultaneously affect the width and depth of the 660 (Akaogi et al., 2007; Inoue et al., 2010; Litasov et al., 2006). Effect of water on the phase loop of olivine-Wadsleyite transition is, unfortunately, both complex and weaker than expected based on 1 wt.% H₂O inclusion (Inoue et al., 2010). A larger amount of water is likely required within the descending slab to diminish the amplitude of S410S beyond the detection threshold. Recent seismic observations (Bina and Kawakatsu, 2010; Fukao et al., 2009; Suetsugu et al., 2006, 2010) have generally favored ‘dry’ (e.g., <0.5 wt.% H₂O, Suetsugu et al., 2006, 2010) slabs in various subduction zones along the western Pacific plate boundaries, however. In addition, the 660 appears to be locally elevated, despite a diminutive amplitude, which is at odds with the expected effect of water in the MTZ (Billen, 2008; Litasov et al., 2006).

Aside from mineralogical explanations, the observed reflection gaps are most definitely affected by wave optics. Similar to the scattering of light, the stacked amplitudes of the underside SH-wave reflections are sensitive to the geometry of the reflecting surface. For instance, a dipping structure or interface can easily cause defocusing or scattering, depending on the size of the structure relative to the wavelength of the incoming wave (Chajlub and Tarantola, 1997). Deconstructive wave field interference from multiple reflectors could further reduce the perceived strength of the 660. Within low-temperature slabs, garnet–ilmenite–perovskite transitions (e.g., Akaogi et al., 2002; Vacher et al., 1998; Weidner and Wang, 1998, 2000) have been suggested to take place over a depth range of 60–100 km at the base of the MTZ (Akaogi et al., 2002; Vacher et al., 1998). Observationally, multiple reflectors have been reported under different tectonic settings (e.g., Ai and Zheng, 2003; Deuss and Woodhouse, 2002; Schmerr and Thomas, 2011; Tibi et al., 2007), but remain questionable beneath the western Pacific region (Lebedev et al., 2002; Niu et al., 2005; Tonegawa et al., 2006). In this study, only the Kuril profile (see Fig. 4C, D) hinted at subtle reflectors with 4–5% amplitudes at ~700- and 780-km depths along slab dip (see Fig. 7C).

The presence of a robust lower-mantle HRZ beneath Kuril slab (see Fig. 7C) lends further support for a deep Kuril slab. Phase transitions of Ca-perovskite (Stixrude et al., 2007), metastable garnet (Hirose et al., 1994; Kubo et al., 2002), stishovite (Hirose et al., 1994; Ita and Stixrude, 1992) phase changes. Within subduction zones, these two transformations likely occur at different MTZ depths (Saikia et al., 2008) and manifest into distinct reflectors (Deuss, 2009; Deuss and Woodhouse, 2002) resembling those detected below southern Kuril arc in this study. Alternative explanations include a delayed meta-stable olivine phase transition (Bina and Kawakatsu, 2010; lidaka and Suetsugu, 1992, 1998; Sung and Burns, 1976), water within slabs (e.g., Inoue et al., 1995, 2010; Koyama et al., 2006; Lawrence and Wyssession, 2006) and a flat garnetite layer (Shen et al., 2008). A combination of these mechanisms may be responsible for the different signatures in the Honshu (a single 520 reflector) and Kuril (multiple MTZ reflectors) profiles.

Finally, a narrow MTZ and a series of strong HRZs (see Figs. 4 and 7) suggest reduced MTZ temperatures east of the Wadati–Benioff zone. This interpretation is supported by recent studies of Scs reverberations (Bagley et al., 2009; Revengaugh and Sipkin, 1994), seismic tomography (Huang and Zhao, 2006; Obayashi et al., 2006; Zhao and Ohtani, 2009), and electrical conductivity (Ichiki et al., 2006). The large reflection amplitudes of these reflections (8–12% of SS) likely require compositional variations associated with a residual thermal plume from the past 130 Ma (Honda et al., 2007; Ichiki et al., 2006; Miyashiro, 1986; Obayashi et al., 2006; Zhao and Ohtani, 2009; Zou et al., 2008).

5. Conclusions

Key conclusions from our study of SS precursors sampling the northwestern Pacific subduction zones are:

1. The depths of the 410 and 660 are negatively correlated if slab dip is considered, especially beneath central Honshu arc. The MTZ olivine phase boundary variations are mainly governed by temperature.

2. The Pacific plate stagnates across central Honshu island at MTZ depths, but the center of the stagnant slab appears to be strongly deformed or buckled near the base of the upper mantle, i.e., the stagnant slab may not be as flat as previously suggested. Eastward broadening of the 660 is likely due to slab ‘pile-ups’.

3. The Pacific plate extends below the transition zone across southern Kuril arc. Major mass and heat fluxes and possible compositional variations are expected near the slab piercing point.

4. Strong reflectors exist within/near the descending slabs at mid MTZ and lower mantle depths.

From a technical standpoint, the results presented in this study provide a glimpse of the future for regional-scale analysis based on intermediate-period SS precursors. Increasingly diverse applications in recent years have underlined the remarkable resolving power of this data set, one that was traditionally tapped as a ‘low resolution’ constraint on mantle structure. This trend will continue in the foreseeable future, especially in view of the growing number of global seismic networks and applications of array methods.

Supplementary data related to this article can be found online at 10.1016/j.epsl.2012.03.023
Acknowledgments

We thank Peter Shearer for constructive suggestions and extra-
diordinary professionalism in handling this manuscript. This study also
benefited from insightful reviews by Nicholas Schmerr and an anonym-
ous reviewer, as well as from the technical assistance of IRIS Data
Management Center. National Science and Engineering Council
(NSERC) and the University of Alberta provided funding support for
this research project.

References

Aagaard, S., Christensen, U.-R., 1992. The in-
formation from 3-dimensional S-velocity
mantle structure along Tethyan margin. J. Geophys. Res. 115, B08309.

Aki, K., 1981. Seismic imaging of upper mantle

Aki, K., 1986. Seismic imaging of upper mantle

Aki, K., 1990. Seismic imaging of upper mantle

Aki, K., 1992. Seismic imaging of upper mantle

Aki, K., 1993. Seismic imaging of upper mantle

Aki, K., 1994. Seismic imaging of upper mantle

Aki, K., 1995. Seismic imaging of upper mantle

Aki, K., 1996. Seismic imaging of upper mantle

Aki, K., 1997. Seismic imaging of upper mantle

Aki, K., 1998. Seismic imaging of upper mantle

Aki, K., 1999. Seismic imaging of upper mantle

Aki, K., 2000. Seismic imaging of upper mantle

Aki, K., 2001. Seismic imaging of upper mantle

