Corrigendum to Geochronology and Thermochronology, 1st Edition, 2018
Last updated 15 April 2019

Chapter 1:

- p. 12: Patterson’s original figure has a mistake in it: the dates associated with the A and B lines should be switched. This should be mentioned in the caption.

Chapter 2:

- p. 25, Figure 2.9: 40Ca and 40Ar labels are switched

Chapter 5:

- p. 83, eqn 5.9: “x” in denominator of RHS should be a “t”
- p. 86, section 5.1.6: first text line after eqn 5.18: should read “…where M has units of mass or moles per length.”
- p. 86, section 5.1.7: the squared on the mu in the numerator of the RHS should be squaring the parentheses, not just the mu.
- p. 89, Table 5.1, 8th equation down (second from bottom): the 6 at the beginning of the equation should be divided by pi-squared
- p. 96, caption to Fig. 5.13: Second sentence should read: “The equilibrium date (teq, equation 5.46) is approached quickly for higher temperature samples, resulting in a shallow temperature-date slope at greater depth, whereas reaching dates close to teq requires longer ingrowth times for lower temperatures and older dates, resulting in steep depth-date trends and shallow depths.”
- p. 96, equation 5.49: 1) On the RHS, there should be no prime symbol after the “t” in the denominator and at the end, in the “dt”. 2) On the RHS, the “T” in the numerator of the exponential should just be a “1”.
- p. 108, equation 5.90: The “y” in the numerator of the third term should be a “z”.
- p. 108, equation 5.91: All instances of “y” (one on LHS, and three on RHS) should be replaced with “z”.

Chapter 8:

- p. 190, See point for p. 12 in chapter 1.

Chapter 10:

- p. 277, equation 10.13: In the middle of the RHS, “238U/235U” should read “238U/235U”
- p. 277, equation 10.18: On RHS, the second “=” should be replaced by “.”

Chapter 11:
• p. 315: equation 11.16: RHS: there should not be a negative sign in front of the E_t in the exponential in the denominator.

• p. 322, Caption to Figure 11.28: Description of the right panel should be rewritten to say: "Right: model results for He ages of randomly selected fragments with varying length and number of original c-axis-perpendicular terminations of an apatite crystal with U and Th concentrations of 20 ppm that has experienced the “Wolf 5” thermal history of Wolf et al. (1998). The original grain had a length of 400 µm, cylindrical radius of 75 µm and model age of ~38 Ma (grey square). Filled symbols represent ages of model fragments with one termination; open symbols represent those with no original terminations. Horizontal dashed lines: lower line is the mean age of fragments with one remaining termination; middle dashed line is mean of all fragments; second from top line is mean age of fragments with no remaining terminations; top line is maximum age of zero-termination grains. The wide range of possible ages from fragments of a single model apatite demonstrate one possible origin of age dispersion in grains with thermal histories involving prolonged residence in the apatite He partial retention zone. (Source: Brown et al. [2013]. Reproduced with permission of Elsevier.)"

Chapter 14:

• Table 14.1: initial ratio for Hf should be $^{182}\text{Hf}/^{180}\text{Hf}$, not $^{182}\text{Hf}/^{177}\text{Hf}$