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[1] The process of irreversible adiabatic decompression
and melting of mantle rocks has been evaluated using the
thermodynamic condition of frictionless decompression in a
gravitational field. It is found that the melt productivity is
significantly greater, thus enhancing the tendency for melt
segregation, if a parcel of mantle rock moves upward at
nearly constant velocity than that derived for the case of
isentropic decompression. The T-Z trajectory of a solid
mantle diapir moving upward at a constant velocity has, in
general, a smaller slope than the isentropic trajectory, and
assumes a negative slope when its density falls below
�94% of that of the surrounding mantle. The acceleration
of upward movement, and the overall density reduction of
the material due to phase change that is the likely cause for
the acceleration, have qualitatively opposite effects on the
deviations of melt productivity and T-Z trajectory of
mantle diapir from those under isentropic conditions.
Citation: Ganguly, J. (2005), Adiabatic decompression and

melting of mantle rocks: An irreversible thermodynamic

analysis, Geophys. Res. Lett., 32, L06312, doi:10.1029/

2005GL022363.

1. Introduction

[2] Decompression of mantle rocks without any signifi-
cant loss of heat leads to the intersection of the P-T
trajectory of the rock with P-T curve of the solidus, thereby
causing melting of the upwelling material (Figure 1).
Considering reasonable velocities, distance of upwelling
and thermal diffusivity of the rock, the process of decom-
pression of mantle material can be shown to be essentially
adiabatic [McKenzie and Bickle, 1988]. As discussed by
Stolper [1996], the adiabatic decompression melting is the
most important mechanism by which magmas form in the
mantle, and thus ‘‘arguably the most significant of all
igneous processes’’. Traditionally the adiabatic decompres-
sion process (dq = 0) has been considered to be isentropic
(dS = 0), which implies that the process is reversible. As
noted, for example by Stolper [1996] and Asimov [2002],
this is at best an approximation, but it has generally been
considered to be a good approximation by them and many
others in the field [e.g., McKenzie, 1984; McKenzie and
Bickle, 1988; Iwamori et al., 1995; Asimov et al., 1997;
Presnall et al., 2002; Green et al., 2001]. A number of
interesting conclusions have emerged by considering the
adiabatic decompression of mantle rocks to be isentropic.
Melt separation and migration, that is the fractional
melting process, necessarily implies loss of entropy from

the upwelling system. In this case, the process has been
considered to be incrementally isentropic. Asimov [2002]
has presented a comprehensive discussion of the various
source terms for entropy production during adiabatic
decompression melting, and evaluated the effects of entropy
production due to chemical disequilibrium between the melt
and the surrounding matrix.
[3] The classic experiment of Joule and Thompson

(Lord Kelvin), which is described in practically any
introductory text on Physical Chemistry, treated the prob-
lem of adiabatic flow of material through a constriction
from a uniform pressure, P1, to another uniform but lower
pressure condition, P2. This is an adiabatic, but an overall
irreversible process (dq = 0, dS > 0), which was shown to
conserve the enthalpy of the system (dq = dH = 0).
Waldbaum [1971] drew attention of geologists to this
well-known result of thermodynamics and applied it to
treat the adiabatic upwelling process of the mantle material.
The idea behind this approach was that the upwelling
process in a pressure gradient may be considered to be a
series of Joule-Thompson experiments with small sequen-
tial decrease of pressure. However, as pointed out by
Ramberg [1972], Waldbaum erred in his thermodynamic
treatment of the problem by not incorporating the effect of
change of gravitational potential on vertically moving
masses over large distance. The purpose of the present
paper is to present a treatment of adiabatic upwelling and
melting within the framework of Joule-Thompson experi-
ment, but with correction for the effects of change of
gravitational potential and kinetic energies, and compare
the results with those derived already by others using the
isentropic condition. All entropy production other than that
due to irreversible decompression has been neglected.
Thus, the formulations presented below provide starting
points for the treatment of adiabatic upwelling and melting
process in the Earth’s mantle as irreversible processes (dq =
0, dS > 0), which represents a shift from the traditional
starting point founded on treating these as reversible
processes. As far as possible, the simplicity of McKenzie’s
treatment [McKenzie, 1984] has been preserved in order to
be able to estimate the effect of entropy production that is
associated with irreversible decompression in a relatively
simple way.

2. Irreversible Adiabatic Melting:
Thermodynamic Formulation

[4] Conservation of energy for a system of unit mass
undergoing irreversible adiabatic decompression (IAD)
through vertical but frictionless displacement in a gravita-
tional field, and restricted only to pressure-volume work,
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leads to the relation [e.g., Lewis and Randall, 1961; Abbott
and Van Ness, 1972]

dH þ gdhþ udu ¼ 0 ð1Þ

where H is the enthalpy per unit mass or specific enthalpy
of the system, u is the linear velocity and h is the height.
Both h and u are taken to be positive upwards. The enthalpy
of a closed system consisting of a mixture of solids (s) and
melt (m) is given by

H ¼ xmHm þ
X
i

xsiHsi ð2Þ

where x is the mass fraction, H is the specific enthalpy and
the superscripts m and si stand for melt and ith solid,
respectively. All thermodynamic quantities used henceforth
are specific quantities.
[5] McKenzie [1984] derived an expression of melt

productivity with change of pressure, dxm/dP, under isen-
tropic condition by considering the simplest case of melting
of monomineralic rock, but at the same time considering T =
T(x, P) as would be the case for melting in a multiphase
system (as noted by McKenzie, for the melting of a mono-
mineralic rock, temperature is a function only of depth if
melt is present). This approach obviously is not completely
adequate to treat melting in a multiphase system, but it is still
believed to have captured some of the interesting aspects of
isentropic melting of multiphase mantle rock. In McKenzie’s
approach, equation (2) reduces to H = xmHm + (1 � xm)Hs =
xmDHf + Hs, where DHf is the specific enthalpy of fusion.
This relation would also approximately hold for a multi-
phase system if the phases have similar specific enthalpies.

[6] A sheared garnet peridotite, PHN 1611, from Thaba
Putsua kimberlite, Lesotho, which is believed to be a
‘fertile’ mantle peridotite, consist of �59% olivine, 11%
orthpyroxene, 20% clinopyroxene and 10% garnet [Boyd
and McCallister, 1976]. It is interesting to note that olivine
and orthopyroxene, which constitute �70% of a mantle
rock, have very similar values of specific enthalpies (for
example, at 1 bar, 298 K, the specific enthalpy of formation
from elements of forsterite and enstatite are �15.45 and
�15.40 kJ/mole, respectively, according to the data by
Saxena et al. [1993]. Clinopyroxene and pyrope garnet
have specific enthalpies that differ from those of olivine
and orthopyroxene in opposite directions. This scenario is
also true for specific (isobaric) heat capacities, entropies and
molar volumes [e.g., Saxena et al., 1993]. Thus, as a rough
approximation we could write

Y � xmYm þ 1� xmð ÞYs ¼ xmDYf þ Y
s ð3Þ

where Y is a specific property of the system (enthalpy,
entropy, volume), DYf is the change of Y on fusion and Ys is
the average value of Y for the solids.
[7] Now writing x for xm and considering H = H(x, P, T),

we have

dH ¼ @H

@x

� �
P;T

dxþ @H

@P

� �
x;T

dP þ @H

@T

� �
P;x

dT ð4Þ

Since H = G + TS, where G and S are the Gibbs energy and
entropy, respectively, we have

@H

@P

� �
T

¼ @G

@P

� �
T

þ T
@S

@P

� �
T

¼ V � T Vað Þ ð5Þ

where a is the coefficient of thermal expansion. The relation
@S/@P = �Va follows from the application of Maxwell’s
relation and the definition of a. Writing, in the spirit of
equation (3),

G � xGm þ 1� xð ÞGs ð6Þ

and

S � xSm þ 1� xð ÞSs ð7Þ

where Gs and Ss are the average specific Gibbs energy and
specific entropy of the solids, equation (5) yields

@H

@P

� �
T

� x DVfð Þ þ V
s � T x Vmamð Þ þ 1� xð ÞVsas

� �
¼ x DVfð Þ þ V

s � Tj
ð8Þ

where DVf is the specific volume of fusion, Vs and as are
the average values of Vs and as, respectively, and j stands
for the collection of terms within the square brackets. Using
equations (3) and (8) and the relationship between the
isobaric heat capacity, Cp, and H, equation (4) reduces to

dH � DHf dxþ xDVf þ V
s� �
dP � TjdP þ xDCp;f þ C

s

p

� 	
dT

ð9Þ

Figure 1. Isentropic (solid line) and IAD (dashed lines)
temperature-depth (T-Z) paths for ascending mantle material
from an arbitrary depth of 225 km. The numbers on the
dashed lines stand for the densities of the ascending material
relative to that of the surrounding mantle. Tp stands for the
potential temperature, as defined by McKenzie and Bickle
[1988]. The geotherm, mantle solidus and isoentropic
gradients are from the latter. IAD: Irreversible adiabatic
decompression.
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Substituting the above relation in equation (1) and
differentiating with respect to P, we get

DHf

dx

dP
þ xDVf þ V

s � Tjþ xDCp;f þ C
s

p

� 	 dT

dP

þ g
dh

dP
þ u

du

dP
� 0 ð10Þ

[8] Following McKenzie [1984], we obtain dT/dP from
the relation T = T(x, P):

dT

dP
¼ @T

@x

� �
p

dx

dP
þ @T

@P

� �
x

ð11Þ

Substituting equation (11) in equation (10), and rearranging
the terms, we finally obtain an expression of melt
productivity during adiabatic irreversible decompression
under frictionless condition

dx

dP


 �
Q irð Þ

�
� xDCp;f þ C

s

p

� 	
@T=@Pð Þx þ Tj

DHf þ xDCp;f þ C
s

p

� 	
@T=@xð Þp

2
4

3
5

� g dh=dPð Þ þ xDVf þ V
s þ u du=dPð Þ

DHf þ xDCp;f þ C
s

p

� 	
@T=@xð Þp

2
4

3
5 ð12Þ

[9] McKenzie [1984] assumed that Cp
S = Cp

m = Cp. In that
case, DCp,f = 0, and the terms within the first square
brackets in the right of the above equation is the same as
that derived by him [McKenzie, 1984, equation (D7)] for
isentropic melting, (dx/dP)S, except that he had TDSf instead
of DHf. Now, very little overstepping was needed even in
the laboratory melting experiments of natural peridotite [e.g.
Takahashi, 1986]. Thus, it is safe to assume that the melting
process in nature does not involve any significant over-
stepping of P-T condition. For an one-component system,
the temperature of the system becomes effectively buffered
along the univariant melting curve during decompression.
In a multiphase system, on the other hand, the equilibrium
melting temperature varies within a temperature interval
defined by the solidus and liquidus. In that case, the
assumption of no significant overstepping of melting con-
dition implies that nearly equilibrium fraction and compo-
sition of melt are produced at any temperature between the
solidus and liquidus. Regardless of whether it is a single
component or multiphase system, we have DHf(P, T) �
TfDSf (P, T) as long as we have a nearly equilibrium situation
(i.e. the Gibbs energy of the system is close to the minimum).
(When the phases represent solutions, the delta terms above
represent changes of the partial molar properties. Also, if the
thermodynamic properties of the solids in a multiphase
system are significantly different, then DHf and DSf would
also be affected by the changing stoichiometry of the melting
reaction between solidus and liquidus).
[10] From the above analysis, we conclude that the terms

within the second square brackets on the right of
equation (12) constitute the effect of entropy production
during the process of adiabatic irreversible decompression.
Now, g(dh/dP) = �1/r = �V where V is the specific volume
of the mantle rocks, which should be very similar to the

specific volume of the solids, Vs, in the upwelling material.
Thus, equation (12) reduces to

dx

dP


 �
Q irð Þ

� dx

dP


 �
S

� xDVf þ u du=dPð Þ
DHf þ xDCp;f

�
þ C

s

p @T=@xð Þp

" #

� dx

dP


 �
S

�L ð13Þ

3. Melt Productivity During Decompression

[11] To have a feeling of the probable magnitude of the
L term in equation (13), we use the values of diopside for
DVf (0.38 cm3/gm [Asimov et al., 1997]) and DHf

(637.6 J gm�1 [Stebbins et al., 1983]). We also assume,
following McKenzie [1984] that Cp

s = Cp
m = Cp and that Cp =

1.2 J gm�1 K�1, as given by Iwamori et al. [1995]. Also
from these authors [Iwamori et al., 1995, Figure 3a], we
obtain @T/@x � 370 K for batch melting between 1260 and
1400�C. Now if we assume that the ascending mantle
material has essentially constant velocity, then these values
yield L = 0.04 GPa�1 for x = 0.10. Iwamori et al. [1995]
calculated the melt productivity for isentropic decompres-
sion of mantle peridotite. From their data, the average
value of [dx/dP]S is around �0.16 GPa�1 at 1400�C for
x = 0.10 � 0.24. Thus, the melt productivity under IAD is
�25% higher than that under isentropic condition at
�1400�C. Similar exercise for x = 0.05 yields 14%
increase of melt productivity under IAD relative to the
isentropic condition. The increase of melt productivity for
x = 0.06 � 0.08 is much higher, by �50%, because of the
shallow slope of (@x/@P)s within this melting interval.
Thus, these calculations suggest that there is a significant
increase of melt productivity under IAD, and conveys an
approximate impression of the magnitude of the increase.
The results are not strongly affected for the case of
fractional melting using Figure 3b from Iwamori et al.
[1995] to calculate (dx/dP)s. A potentially important con-
sequence of increased melt productivity is that melt segre-
gation would take place more quickly than envisaged for
the limiting case of isentropic decompression.

4. Irreversible Adiabatic Decompression of
Solid Mantle

[12] As in decompression melting, the adiabatic decom-
pression of the solid mantle material has been always
considered to be an isentropic process, except by Waldbaum
[1971], who considered the case of isenthalpic decompres-
sion. Here we revisit the problem by satisfying equation (1).
Setting x = 0 in equation (9), and substituting the result in
equation (1), we obtain

CpdT � V Ta� 1ð ÞdP þ gdhþ udu ¼ 0 ð14Þ

(note that the above identity is exact even though equation (9)
has an approximate equality as a result of approximation of
properties in the presence of a melt phase). Thus,

dT

dP


 �
Q irð Þ

¼ Ta� 1

rCp

� gdh

CpdP
� u

Cp

du

dP

� �
ð15Þ
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Using dZ = �dh = dP/(rrg), where Z is the depth (+ ve
downwards) and rr is the density of the mantle rock, the
above equation yields

dT

dZ


 �
Q irð Þ

¼ rr
r

gTa
Cp

� �
þ g

Cp

1� rr
r

� �
� u

Cp

du

dZ

� �
ð16Þ

The term within the first parentheses on the right equals
the isentropic gradient [e.g., Turcotte and Schubert, 1982]
so that we can write

dT

dZ


 �
Q irð Þ

¼ rr
r

dT

dZ


 �
S

þ g

Cp

1� rr
r

� �
� u

Cp

du

dZ

� �
ð17Þ

Since r < rr (otherwise material would not move upward),
the second right hand term (<0) somewhat counteracts the
first right hand term, which is positive, and may even
cause a temperature rise, [dT/dZ]Q(ir) < 0, as the material
moves upward at a constant velocity. The ratio r/rr
controls the velocity of upward motion. If the ratio is very
close to unity, then the temperature gradient effectively
equals isentropic gradient if the adiabatic condition
prevails (u ! 0 as r ! rr).
[13] Figure 1 shows the T-Z trajectories of mantle rocks

upwelling at constant velocity, as calculated according to
equation (17), with different values of r/rr, Cp = 1.2 kJ/kg-K,
as above, and typical value of isentropic gradient of the
mantle rock of �0.5 K/km (Figure 1). It is found that
the ascent of a mantle material with 94% density of the
surrounding mantle will be essentially isothermal, if it moves
with a constant velocity. If the density of the ascending
material is lower, then there will be a net heating during
ascent. It may be noted in this connection that extraction of
20% basalt from a garnet peridotite decreases its density by
1.7% [Jordan, 1979].

5. Effect of Acceleration

[14] So far, we have limited our numerical results to
mantle diapir moving upward at a constant velocity as we
have no quantitative idea about the possible acceleration of
vertical movement. If there are phase changes within the
solid mantle material as it moves upward, which are
necessarily to lower density phases, there would be increase
of the buoyancy force leading to acceleration of the upward
movement. Ramberg [1972] suggested that more than 10%
melting of a diapir is enough to reduce its viscosity
sufficiently to accelerate its upward movement. It is easy
to see from equations (13) and (17) that acceleration of
upward movement (du/dP < 0, du/dZ < 0) reduces the
departures of both melt productivity and T-Z trajectory from
the isentropic conditions compared to the case of displace-
ment with constant velocity. However, the density reduction
of the mantle diapir, which is responsible for its accelera-
tion, works in the opposite direction (Figure 1). If there is
any significant kinetic lag during phase change, then, of
course, one would need to take into account the effect of
entropy production due to irreversible reaction.

6. Potential Temperature

[15] McKenzie and Bickle [1988] introduced the concept
of potential temperature of mantle material, TP, which is the

projection of the temperature of the material from its source
region to the Earth’s surface along an isentropic gradient
(Figure 1). Thus, materials with different depths along an
isentropic gradient within the Earth have the same Tp. The
concept of potential temperature has been widely used in the
literature of igneous petrology as a means of comparison of
the extent of melting that materials with different temper-
atures in the source, Ts, would undergo during ascent. If
these materials have the same Tp, then the extent of melting
is considered to be the same. However, as should be evident
from Figure 1, two mantle rocks displaced upward from two
different depths located on an isentropic gradient could
intersect the solidus at two different temperatures, depend-
ing on their original difference of Ts and densities, and thus
undergo different extents of partial melting. The practical
usefulness of the concept of potential temperature requires a
demonstration that the density of the upwelling material
differs only slightly from the ambient mantle density.
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