Sand Mineralogy Within the Bagnold Dunes, Gale Crater, as Observed In Situ and From Orbit

1Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA, 2Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA, 3NASA Ames Research Center, Moffett Field, CA, USA, 4Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, USA, 5Department of Geosciences, University of Arizona, Tucson, AZ, USA, 6Planetary Science Institute, Tucson, AZ, USA, 7Geophysical Laboratory, Carnegie Institution for Science, Washington, DC, USA, 8Chesapeake Energy, Oklahoma City, OK, USA, 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA, 10Jacobs at NASA Johnson Space Center, Houston, TX, USA, 11Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, 12Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA, 13Lunar and Planetary Institute, Houston, TX, USA, 14School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA, 15Department of Physics, University of Guelph, Guelph, Ontario, Canada, 16Goddard Space Flight Center, Greenbelt, MD, USA, 17SETI Institute, Mountain View, CA, USA

Abstract Curiosity investigated active eolian sands near linear dunes during Phase 2 of the Bagnold Dunes campaign in Gale crater, Mars. Ogunquit Beach, a sample scooped from a large-ripple trough within the Mount Desert Island ripple field and delivered to the Chemistry and Mineralogy (CheMin) X-ray diffraction instrument, is dominated by basaltic igneous minerals and X-ray amorphous materials. CheMin mineralogy of the Gobabeb sample acquired at a large-ripple crest on the Namib barchan dune during Phase 1 is similar to Ogunquit Beach. Ogunquit Beach, however, contains more plagioclase and Gobabeb contains more olivine. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM)-based estimates of mineralogy at the optical surface of Namib Dune and Mount Desert Island demonstrate that surface sands are enriched in olivine and depleted in plagioclase over Mount Desert Island relative to Namib Dune. Differences between CheMin-derived and CRISM-derived mineralogies suggest sorting by grain size on bedform to dune field scales. Crystal chemistry from CheMin suggests contributions from multiple igneous sources and the local bedrock.

Plain Language Summary Remote sensing data from orbit indicate that wind-blown sands in the Bagnold Dune Field in Gale crater, Mars, are sorted by their composition. The Mars Science Laboratory Curiosity rover studied the Bagnold Dune Field at two locations to investigate the chemical and mineral composition of the sands and why they are sorted across the dune field. Data from Curiosity show distinct differences between the minerals in the upwind portion of the dune field compared to the downwind portion, but these differences are not the same as those observed from orbit. The scale and location of the sampling by Curiosity compared to orbiters explains the discrepancy between the two techniques. Results from both techniques suggest subtle differences in mineralogy within a single dune and across the dune field that can be explained by sorting from wind and contribution from the erosion of local bedrock.

1. Introduction

After landing in Gale crater in August 2012, the Mars Science Laboratory Curiosity rover started its ascent toward Aeolis Mons (a.k.a., Mount Sharp) to characterize modern and ancient Martian environments. Along its traverse, Curiosity encountered an active eolian dune field, informally called the Bagnold Dune Field. Similar active, low-albedo dune fields and sand sheets are ubiquitous across Mars (Hayward et al., 2007), and orbiter-based thermal infrared and visible/shortwave-infrared (VSWIR) spectroscopic measurements of them are consistent with basaltic compositions (e.g., Bibling et al., 2005; Christensen et al., 2000; Poulet et al., 2009; Rogers & Bandfield, 2009; Stockstill-Cahill et al., 2008; Tirsch et al., 2011). The mineralogy within
the Bagnold Dune Field using orbital VSWIR observations from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) demonstrates that basaltic minerals are segregated within the dune field. Barchanoidal dunes at the upwind margin and crests of linear dunes have stronger olivine signatures, whereas the linear dunes and the stoss sides of barchanoidal ridges have stronger high-Ca pyroxene signatures (Figure 1a; Lapotre, Ehlmann, Minson, Arvidson, et al., 2017; Seelos et al., 2014). Furthermore, olivine and plagioclase abundances are anticorrelated, and the apparent mineral segregation was thought to be related to wind sorting of minerals (e.g., by grain size, density, and shape) but also possibly by mixing of different sediment sources and/or a difference in dust cover (Lapotre, Ehlmann, Minson, Arvidson, et al., 2017). Possible sand source(s) include olivine-bearing units in Gale crater’s walls (Buz et al., 2017; Ehlmann & Buz, 2015) and more local, perhaps more felsic materials possibly found in the crater walls or underlining the Bagnold Dune Field. *Curiosity* has investigated felsic targets in the conglomerates of the Aeolis Palus fan (Sautter et al., 2015), and the fluviolacustrine rocks that underlie the southwestern portion of the Bagnold Dune Field contain abundant plagioclase feldspar (Bristow et al., 2018).

Curiosity studied the Bagnold Dune Field during an extensive eolian science campaign consisting of two phases. Phase 1 was an examination of two barchan dunes along the northern, upwind margin of the dune field where the Gobabeb sample was scooped. Phase 2 examined linear dunes further south into the dune field where the Ogunquit Beach sample was scooped (Figure 1a; Bridges & Ehlmann, 2017; Lapotre & Rampe, 2018). Here we focus on addressing compositional variations across the Bagnold Dunes, using both rover and CRISM data, and on how ground and orbiter-based inferences can complement one another. We first report on the CheMin-derived mineralogy of sands sampled from the linear dunes during Phase 2 of the campaign and compare these results to the mineralogy of sands sampled from the dune field’s upwind margin during Phase 1, which was previously described in depth by Achilles et al. (2017) and Ehlmann et al. (2017). We compare CheMin mineralogy to CRISM-derived mineralogy for undisturbed surfaces at the barchan and linear dunes closest to the CheMin sampling sites. Finally, we discuss how the two data sets can be used in a value-added manner to better understand sediment sorting and sources within Martian dune fields.

2. Data Collection and Processing

2.1. CheMin

CheMin is a charge-coupled device (CCD)-based transmission X-ray diffraction (XRD)/X-ray fluorescence instrument inside the body of the rover that employs Co radiation. The 2θ range is 2° to 52° with 0.3° angular resolution. Piezoelectric-induced vibrations create grain motion in cells with an active volume of 10 mm³ (Blake et al., 2012). The two-dimensional CCD XRD patterns are converted to characteristic one-dimensional patterns with modified open-source GSE ADA software (Dera et al., 2013). Cell offsets from the ideal diffraction position were determined by an internal calibration method based on refined unit cell parameters of plagioclase (Morrison, Downs, Blake, Prabhu, et al., 2018; Morrison, Downs, Blake, Vaniman, et al., 2018).

During the Bagnold Dunes campaign, two loose sand samples were scooped, sieved, and delivered to instruments inside the rover. These samples were collected from the surface to a few centimeters deep within the sands. Thus, the samples analyzed by CheMin are dominated by subsurface material. The Phase 1 Gobabeb sample was collected adjacent to the crest of a large ripple from the secondary slip face of the Namib barchan dune. The Phase 2 Ogunquit Beach sample was collected from the trough of a ripple in the Mount Desert Island ripple field (Figure 2a). Samples were processed by the rover’s Sample Acquisition Sample Processing and Handling system and the Collection and Handling for In situ Martian Rock Analysis (CHIMRA) system (Anderson et al., 2012), and ~75 mm³ of the <150-μm size fraction was delivered to CheMin Kapton cell 1A (Figure 2b).

Ogunquit Beach was scooped on sol 1650 but not delivered to CheMin until sol 1831 because of an anomaly in drill actuators. Three nights of analysis (a total of 22 hr of integration) were acquired on sols 1831, 1842, and 1847 by inducing piezoelectric vibrations on a neighboring cell pair (cell pair 0) to prevent sample ejection from the cell, as happened with the first analysis of a scooped sand (the Rocknest sample as described by Bish et al., 2013). Mineral abundances and unit cell parameters of major phases were quantified by Rietveld refinement of the 1-D patterns (e.g., Bish & Howard, 1988) using Materials Data Inc. Jade software. Abundances of X-ray amorphous materials and phyllosilicates were determined using a modified version...
Figure 1. (a) Relative strength of olivine (OLINDEX3; red; range set to 0.024–0.075), high-calcium pyroxene (HCPINDEX2; green; range set to 0.0–0.0074), and low-calcium pyroxene (LCPINDEX2; blue; no values above 0.0 were found) signatures from CRISM parameter map data overlain onto a High Resolution Imaging Science Experiment-derived shaded relief map (Parker & Calef III, 2016). Curiosity’s traverse is outlined in white. Yellow rectangles show locations of the 3 × 3 CRISM pixels used for modeling; pink labels indicate CheMin samples within the dune field whereas light blue labels indicates other CheMin samples of interest. (b, c) Single scattering albedo spectra (red) and highest-likelihood modeled spectra (blue) for Namib Dune (b) and Mount Desert Island (c) along with their respective residuals (data/model). (d, e) CRISM-derived probability densities of abundances (wt.%) for each crystalline endmember phase (violins) and comparison with closest CheMin target (star) for Namib Dune (d) and Mount Desert Island (e). CheMin abundances were renormalized to only include crystalline phases used for CRISM modeling. CheMin = Chemistry and Mineralogy; CRISM = Compact Reconnaissance Imaging Spectrometer for Mars.
of the full pattern fitting software FULLPAT (Chipera & Bish, 2002), which utilizes a library of XRD patterns of crystalline, poorly and paracrystalline, and X-ray amorphous materials. We also estimated the composition of the X-ray amorphous component from mass balance calculations using the abundance and composition of all crystalline phases identified in Rietveld refinements and the bulk chemistry of the <150-μm size fraction as measured by the Alpha Particle X-ray Spectrometer (APXS) of the post-sieve dump pile (e.g., Morrison, Downs, Blake, Vaniman, et al., 2018).

2.2. CRISM

CRISM is a VSWIR hyperspectral imager onboard the Mars Reconnaissance Orbiter and collecting radiance data from the Martian surface at 544 discrete wavelengths spanning the 0.4- to 4.0-μm wavelength range (Murchie et al., 2009). Targeted observations may be collected in several modes, each corresponding to different spatial resolutions: half-resolution short/long (HRS/HRL; 36 m per pixel), full-resolution targeted (FRT; ~18 m per pixel), and along-track oversampled (ATO; 18 m per pixel).

We processed five CRISM scenes covering the Bagnold Dunes (HRL0000BABA, FRT0000B6F1, FRT00021C92, FRT0001FD99, and ATO0002EC79), removing contributions from gases and aerosols, and retrieving single scattering albedos as discussed in Kreisch et al. (2017). Spectra retrieved for the Namib Dune and Mount

![Figure 2. (a) Mars Hand Lens Imager focus merge product of Ogunquit Beach scooping location before sampling (target: Avery Peak, product 1651MH0007030000603240R00). (b) Mars Hand Lens Imager focus merge product of Ogunquit Beach <150-μm dump pile (product 1971MH0001630000504768R000). (c) Chemistry and Mineralogy X-ray diffraction patterns of Ogunquit Beach and Gobabeb from three nights of analysis.](image)
Desert Island sampling regions (Figure 1a) were found to be similar in shape for all scenes, although absolute amplitudes varied from scene to scene. These variations are a consequence of imperfect knowledge of dust and ice atmospheric opacities, of the single particle phase function assumed for surface scattering, and of the difficulties associated with retrieving data for exactly the same several pixels adjacent to Curiosity’s sand sampling sites from scene to scene. Of the five scenes, only HRL0000BABA and FRT0001FD99 cover both sand sampling sites, such that using data from those minimizes uncertainty associated with scene-to-scene variations. We illustrate the overall dune mineralogy using HRL0000BABA, with its 36-m-per-pixel resolution (Figure 1a), and also use data retrieved from this scene processed to 12 m per pixel to retrieve mean spectra for a 3 × 3 pixel area on the dunes adjacent to the sampling sites (Figures 1b and 1c). Our processing explicitly removes the spatial point spread function smearing from the data, minimizing the brightness spread of surrounding pixels into the dune-specific pixel areas. Spectra for FRT0001FD99 are compromised by relatively high inferred dust opacities (1.04 for FRT0001FD99 vs. 0.53 for HRL0000BABA), warm detector temperatures (−144 vs. −152 °C), the fact that the Namib Dune site is at the very edge of the scene, and a noticeable amplitude shading from the top to the bottom of the map-projected versions of FRT0001FD99.

Endmember phases used for spectral modeling were selected based on the presence of clear spectral signatures in single scattering albedo (SSA) data (e.g., olivine and pyroxenes) and expectations from geological context (e.g., plagioclase and magnetite; Lapotre, Ehlmann, Minson, Arvidson, et al., 2017). The final set of endmember phases included one olivine (Fo 51), two pyroxenes (augite and pigeonite), labradorite, magnetite, and basaltic glass to model the presence of an amorphous component (see Table S1 and Figure S1 for endmember spectra). The precise chemistry of solid solutions used for CRISM modeling was chosen on the basis of how they affected spectral fits—no a priori ground knowledge was used (Lapotre, Ehlmann, Minson, Arvidson, et al., 2017). Optical constants for these selected endmember phases were derived following the methodology described in Lapotre, Ehlmann, Minson, Arvidson, et al. (2017).

We then applied the Markov chain Monte Carlo algorithm of Lapotre, Ehlmann, & Minson (2017) for retrievals of mineral abundances and grain sizes from SSA data. Markov chains of 250,000 models were built for each spectrum, yielding full probability densities of mineral abundances and grain sizes permitted by the data at each location. Although we present the full inverted probability densities, we chose to illustrate inverted modal mineralogy by their corresponding highest marginal likelihood model (HMLM). Whereas the HMLM is not the overall best fit to the data, it uses the modal abundance from each endmember’s posterior probability.

We emphasize that CRISM-retrieved mineralogy and grain sizes reflect those found within the typical skin depth penetrating into grains (e.g., Clark & Roush, 1984), which typically is ~1–10s μm, such that CRISM is sensing the very top surface of the dunes and integrates its composition over horizontally extensive, decameter-scale undisturbed areas. In contrast, CheMin analyzes samples with typical volumes of ~10s mm³, scooped from a few centimeters below the surface and sieved to <150 μm. Furthermore, a single sample from a dune would not capture the compositional variations expected within an active dune, but CheMin data provide definitive quantitative mineralogy, an estimate on X-ray amorphous abundance, and crystal chemistry of major minerals. As a result, CRISM- and CheMin-derived mineralogies provide different but complementary information about spatial compositional variability within eolian sands.

3. Results
3.1. CheMin
Basaltic minerals and X-ray amorphous phases dominate the Ogunquit Beach sample (Table 1; Figure 2c). Major mineral phases identified from Rietveld refinements include (relative to the crystalline fraction) plagioclase feldspar (47.1 wt.%), olivine (18.2 wt.%), augite (15.7 wt.%), and pigeonite (10.2 wt.%). The crystal chemistry of these phases derived from unit cell parameters (Table S2) show the following mineral compositions: plagioclase An48(35), olivine Fo40(35), augite (Mg1.27(19)Ca0.66(7)Fe0.08(23))Si2O6, and pigeonite (Mg1.23(21)Fe0.63(29)Ca0.15(11))Si2O6 (Table 2). Values in parentheses represent 1σ errors for the final digits. Overlapping pyroxene peaks and the relatively low angular resolution of CheMin result in larger uncertainties in pyroxene compositions (e.g., Achilles et al., 2017). Minor phases include magnetite (2.5 wt.%), hematite (2.3 wt.%), and anhydrite (2.3 wt.%). Quartz (1.6 wt.%) is present near the detection limit of CheMin (Blake et al., 2012).
Table 1
Mineral and Amorphous Abundances for All Loose Sediment Samples Measured to Date by CheMin, and Highest-Likelihood Abundances as Estimated From CRISM

<table>
<thead>
<tr>
<th>Ogunquit Beach (linear)</th>
<th>Gobabeb (barchan)</th>
<th>Rocknest</th>
<th>Namib Dune (CRISM)</th>
<th>Mount Desert Island (CRISM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystalline</td>
<td>Xtal + Amor</td>
<td>No phyllo</td>
<td>Crystalline</td>
<td>Xtal + Amor</td>
</tr>
<tr>
<td>Plagioclase</td>
<td>47.1(10)</td>
<td>24.7(5)</td>
<td>26.7(5)</td>
<td>36.5(8)</td>
</tr>
<tr>
<td>Olivine</td>
<td>18.2(7)</td>
<td>9.6(3)</td>
<td>10.4(4)</td>
<td>25.8(4)</td>
</tr>
<tr>
<td>Augite</td>
<td>15.7(18)</td>
<td>8.2(9)</td>
<td>8.9(10)</td>
<td>20.2(4)</td>
</tr>
<tr>
<td>Pigeonite</td>
<td>10.2(6)</td>
<td>5.4(3)</td>
<td>5.8(3)</td>
<td>10.6(4)</td>
</tr>
<tr>
<td>Magnetite</td>
<td>2.5(3)</td>
<td>1.3(2)</td>
<td>1.4(2)</td>
<td>2.1(2)</td>
</tr>
<tr>
<td>Hematite</td>
<td>2.3(3)</td>
<td>1.2(2)</td>
<td>1.3(2)</td>
<td>0.9(1)</td>
</tr>
<tr>
<td>Anhydrite</td>
<td>2.3(3)</td>
<td>1.2(2)</td>
<td>1.3(2)</td>
<td>1.3(1)</td>
</tr>
<tr>
<td>Quartz</td>
<td>1.6(2)</td>
<td>0.8(1)</td>
<td>0.9(1)</td>
<td>0.8(1)</td>
</tr>
<tr>
<td>Ilmenite</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Phyllosilicate</td>
<td>—</td>
<td>7.4(30)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Amorphous</td>
<td>—</td>
<td>40(15)</td>
<td>—</td>
<td>43(16)</td>
</tr>
</tbody>
</table>

Note: Abundances are in weight percent and CheMin uncertainties in parentheses are 1σ. CRISM uncertainties are shown in Figure 1 for crystalline phases. CheMin = Chemistry and Mineralogy; CRISM = Compact Reconnaissance Imaging Spectrometer for Mars.

Crystalline column includes mineral abundances renormalized to 100% crystalline phases (i.e., no amorphous or phyllosilicate components). Xtal + Amor column includes mineral, amorphous, and phyllosilicate abundances. No phyllo column includes mineral and amorphous abundances renormalized to 100% without phyllosilicate abundance. At or below the CheMin detection limit. Basaltic glass was used as an amorphous endmember for CRISM modeling. Constrained by FULLPAT; Alpha Particle X-ray Spectrometer-constrained value is ~33% amorphous for Ogunquit Beach and ~42% amorphous for Gobabeb.

Table 2
Crystal Chemistry of Major Minerals in Ogunquit Beach, Gobabeb, and Rocknest

<table>
<thead>
<tr>
<th>Ogunquit Beach</th>
<th>Gobabeb</th>
<th>Rocknest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plagioclase</td>
<td>(Ca0.48(5)Na0.52)Al1.48Si2.52O8</td>
<td>(Ca0.63(5)Na0.37)Al1.63Si2.37O8</td>
</tr>
<tr>
<td>(Mg1.196)Fe0.81SiO4</td>
<td>(Mg1.083)Fe0.92SiO4</td>
<td>(Mg1.143)Fe0.86SiO4</td>
</tr>
<tr>
<td>Olivine</td>
<td>(Ca0.76(3)Mg0.2(3)Fe0.8)Al2SiO4</td>
<td>(Ca0.75(1)Mg0.25(1)Fe0.8)Al2SiO4</td>
</tr>
<tr>
<td>(Mg1.083)Fe0.92SiO4</td>
<td>(Mg0.95(1)Fe0.95(1)SiO4</td>
<td>(Mg1.054)Fe0.85(1)SiO4</td>
</tr>
<tr>
<td>Augite</td>
<td>(Ca0.80(3)Mg0.20(3)Fe0.8)Al2SiO4</td>
<td>(Ca0.75(1)Mg0.25(1)Fe0.8)Al2SiO4</td>
</tr>
<tr>
<td>(Mg1.083)Fe0.92SiO4</td>
<td>(Mg0.95(1)Fe0.95(1)SiO4</td>
<td>(Mg1.054)Fe0.85(1)SiO4</td>
</tr>
<tr>
<td>Pigeonite</td>
<td>(Ca0.80(3)Mg0.20(3)Fe0.8)Al2SiO4</td>
<td>(Ca0.75(1)Mg0.25(1)Fe0.8)Al2SiO4</td>
</tr>
<tr>
<td>(Mg1.083)Fe0.92SiO4</td>
<td>(Mg0.95(1)Fe0.95(1)SiO4</td>
<td>(Mg1.054)Fe0.85(1)SiO4</td>
</tr>
</tbody>
</table>

aFrom Achilles et al. (2017).

FULLPAT analyses suggest the presence of 40(15) wt.% X-ray amorphous materials, which are best fit by a combination of basaltic and rhyolitic glasses. The XRD patterns of X-ray amorphous phases with different compositions (e.g., amorphous silicates and sulfates; Morris et al., 2015), however, are similar and may substitute for one another in FULLPAT models. We estimated the composition of the X-ray amorphous component using the phyllosilicate-free mineral abundances from Rietveld refinements, crystal chemistry, amorphous abundance from FULLPAT, and the APXS-measured composition of the <150-μm dump pile (Table S4). Our calculations suggest the amorphous component is comprised of SiO2 (~46 wt.%), FeO (~22 wt.%), Al2O3 (~7 wt.%), SO3 (~6 wt.%), CaO (~5 wt.%), Na2O and MgO (~3 wt.% each), TiO2 and P2O5 (~2 wt.% each), and minor (~<2 wt.% each) Cl, K2O, Cr2O3, and MnO. The composition of the amorphous component also includes crystalline phases below the CheMin detection limit.

3.2. CRISM

By design, the endmember phases used for modeling yield low-root-mean-square fits (<6 × 10^-3 and residuals typically <2.5%) to the data.
at both locations. Figures 1b and 1c illustrate the goodness of spectral fits through the example of the HMLM models.

At both locations, significant amounts of basaltic glass (HMLM 25–50 wt.%) seem to be required by the data (Table 1). However, the difference in inverted glass abundances between both locations may result from first-order albedo/spectral slope matching because basaltic glass is relatively featureless in the VSWIR wavelength range (Figure S1). Furthermore, because a single phase function was used to derive SSA over the entire CRISM scene, the difference in inverted basaltic glass abundance at Namib Dune and Mount Desert Island may thus be an artifact of their separated locations within the CRISM scene.

When posterior probabilities are renormalized to crystalline phases only, both locations display similar mineralogy (Figures 1d and 1e), with dominant plagioclase (~60 wt.%), followed by pyroxenes (~25 wt.%), olivine (< ~15 wt.%), and magnetite (< ~5 wt.%). One important difference is that the augite composition derived from CheMin data of Ogunquit Beach may be very low in Fe whereas augite used in CRISM models contains Fe. More olivine and less plagioclase seem to be required by the data at Mount Desert Island than at Namib Dune, consistent with the trend observed by Lapotre, Ehlmann, Minson, Arvidson, et al. (2017) between barchan dunes and a linear dune further east. HMLM grain sizes yield weighted average effective sizes in the coarse sand range (Table S3).

4. Discussion

The CheMin mineralogies of Gobabeb and Ogunquit Beach are broadly similar—both samples are dominated by plagioclase, olivine, augite, pigeonite, and X-ray amorphous materials and minor magnetite, hematite, anhydrite, and quartz. Distinct differences between the two samples are observed; Ogunquit Beach has more plagioclase than Gobabeb, whereas Gobabeb has more olivine than Ogunquit Beach (Table 1), consistent with enrichment in mafic phases found at ripple crests in active ripples by APXS (e.g., O’Connell-Cooper et al., 2017, 2018). The crystal chemistry of the major phases from CheMin suggests multiple igneous sources for all eolian samples measured to date. As was reported for Rocknest and Gobabeb (Achilles et al., 2017), olivine and pigeonite have similar molar Mg/(Mg + Fe) ratios, whereas augite is more magnesian, indicating augite and pigeonite are not in equilibrium with one another. This, in addition to the differences in An# between the samples (Table 2), suggests at least two basaltic igneous sources for the Bagnold Dunes.

Likewise the CRISM-derived mineralogies at Namib Dune and Mount Desert Island are broadly similar (Figures 1d and 1e), and differences between olivine and plagioclase abundances may largely be explained through their respective positions within the dune field. Segregation between felsic and mafic grains in eolian dune fields may occur through the effects of grain size and mineralogy (which in turn may affect grain density, grain shape, etc.) and has been observed on Earth and Mars (e.g., Chen et al., 2018; Lapotre, Ehlmann, Minson, Arvidson, et al., 2017; Stockstill-Cahill et al., 2008). Dune fields in Iceland and the Badain Jaran Desert in China show a concentration of fine mafic grains downwind and a concentration of coarse felsic grains across the field’s trailing edges, demonstrating that particle weight controls variations in mineral composition across a dune field. Particle shape may also play a significant role in mineral segregation, where rounded grains and euhedral crystals favor migration, and flat grains (e.g., plagioclase) are not as easily transported (Mangold et al., 2011). However, we do not observe discrete elongated plagioclase crystals in Mars Hand Lens Imager images of the sand, such that plagioclase may instead be present in subangular lithic fragments, and feedbacks between particle weight and topography likely control the observed spatial variability over the Bagnold Dunes. Finer grains (mafic and felsic) may move up the stoss slopes of barchan dunes along the field’s trailing edge, whereas the coarsest grains may be left as lags at the base of those dunes (e.g., Lapotre & Rampe, 2018; Weitz et al., 2018), consistent with strong CRISM olivine signatures there (Figure 1a). The grain size fraction that is readily transported across the dune field may then gradually get enriched in finer mafic grains with transport distance, explaining the CRISM-derived increase in olivine-to-plagioclase ratio between Namib Dune and Mount Desert Island.

Unsurprisingly, differences exist between CRISM- and CheMin-derived compositions (Figures 1d and 1e). CRISM- and CheMin-derived mineralogies are more similar at Mount Desert Island/Ogunquit Beach than at Namib Dune/Gobabeb. These differences can be directly related to both sample size and sample
location for each technique. At Gobabeb, CheMin sampled a ripple crest, which, while locally enriched in olivine, may not be representative of the dune-surface average composition. In contrast, CheMin sampled a ripple trough at Ogunquit Beach, which is expected to be more similar to average-surface composition as derived from CRISM. Furthermore, whereas the qualitative strengths of olivine and pyroxene signatures vary across the dune field (Figure 1a; Lapotre, Ehlmann, Minson, Arvidson, et al., 2017; Seelos et al., 2014), we did not observe changes in the olivine-to-pyroxene ratios in the CheMin data within the 1σ errors of our refinements (Table 1). However, the CheMin analysis was restricted to the <150-μm size fraction and may not have captured differences in abundances of the coarsest fraction. Furthermore, quantitative CRISM-based estimates actually yield a higher olivine-to-pyroxene ratio at Mount Desert Island than at Namib Dune, such that the qualitative trends observed in parameter maps may instead reflect trends in grain size or the effect of relatively featureless phases with broad and often shallow absorption features (e.g., plagioclase or glass) on those parameters (Lapotre, Ehlmann, Minson, Arvidson, et al., 2017). Alternatively, if the augite in Mount Desert Island has low Fe content, as suggested by crystal chemistry derived from CheMin, then this phase would not be easily detected by CRISM. Altogether, CheMin- and CRISM-derived mineralogies can be used to constructively constrain patterns and magnitude of wind sorting over the dune field in a complementary fashion.

In addition to wind sorting, spatial variations in composition may also point toward contribution from different local sediment sources. From CheMin, the refined compositions of olivine and pigeonite in Ogunquit Beach are within or very close to the 1σ error of those for Gobabeb, suggesting a similar sediment source for these minerals (Table 2). The differences in plagioclase and augite compositions between the two samples, however, are outside of the 1σ uncertainty (i.e., An48(5) and Mg1.27(19)Ca0.66(7)Fe0.08(23) for Ogunquit Beach and An53(5) and Mg0.89(8)Ca0.73(3)Fe0.38(9) for Gobabeb). The more sodic plagioclase in Ogunquit Beach could result from a different basaltic igneous source or from contribution of grains from the underlying Murray formation because plagioclase in samples measured from the Murray formation near Ogunquit Beach are ~An40(6) (Achilles, 2018). This difference in plagioclase composition may also result from contamination from Sebina. It is important to note that the plagioclase composition of the Rocknest sample (An49(4)), scooped from an inactive sand patch near the landing site, is the same within error of the plagioclase composition in Ogunquit Beach (Table 2). The difference between the plagioclase in Rocknest and Gobabeb suggests that there is true variation in plagioclase composition in loose sediments in Gale crater, which may result from variable sediment sources.

Differences in the X-ray amorphous component compositions in Ogunquit Beach and Gobabeb may also be a result of different local sediment sources. The estimated compositions of the X-ray amorphous components of Ogunquit Beach and Gobabeb are broadly similar and are both dominated by SiO2, FeO, Al2O3, and SO3 (Tables S4 and S5). The compositions of the amorphous components in both samples are inconsistent with pure basaltic glass and could be comprised of a combination of volcanic and/or impact glass(es), weathered silicates, sulfates, and nanophase Fe-oxides (Achilles et al., 2017; Ehlmann et al., 2017). Ogunquit Beach has more FeO, MgO, and CaO, whereas Gobabeb has more SiO2, Na2O, and SO3. Some of the bedrock near Gobabeb contains amorphous silica (Morris et al., 2016; Yen et al., 2017), whereas the local bedrock near Ogunquit Beach is relatively enriched in nanophase Fe oxides (Achilles, 2018), which could explain enrichments in FeO and SiO2 in Ogunquit Beach and Gobabeb, respectively. Martian dust, which is enriched in nanophase Fe oxides (e.g., Morris et al., 2006), is an unlikely source of the Fe enrichment because active sediment transport was observed during Phase 2 (Baker et al., 2018).

Comparing the mineralogy of modern sands in Gale crater to ancient eolian sandstone from the Stimson formation may suggest different sediment sources for the eolian dune fields in the crater floor over time. Modern eolian samples have abundant olivine, pigeonite, and augite (i.e., high-Ca pyroxene), whereas samples from the Stimson eolian sandstone lack olivine and contain abundant pigeonite and orthopyroxene (i.e., low-Ca pyroxene [Yen et al., 2017]). It is likely that the Stimson once contained olivine that has since been altered (Yen et al., 2017), but the presence of augite in modern sediments and orthopyroxene in ancient sandstone may point toward shifts in sediment source over time. One important caveat is that overlapping XRD peaks from different pyroxenes result in relatively large errors in abundances and refined crystal chemistry. More samples from future eolian sandstones as Curiosity climbs Mount Sharp would help further investigate changes in sediment source spatially and through time.
Acknowledgments
We gratefully acknowledge support from the NASA Mars Science Laboratory Mission and the MSL engineering and science teams for executing the Bagnold Dunes campaign. We thank Kevin Cannon and Kim Seelos for their thoughtful reviews of this manuscript. Mission data (i.e., collected by CheMin, APXS, and CRISM) supporting the conclusions can be obtained from the Planetary Data System Geosciences Node. Additional data supporting the conclusions are found in the supporting information. This manuscript is dedicated to Nathan Bridges, who helped design this campaign and whose passion and enthusiasm are dearly missed.

References

