Quaternary diatoms and palaeoenvironments of the Koora Plain, southern Kenya rift

Veronica Muiruria, R. Bernhart Owen, Richard Potts, Alan L. Deino, Anna K. Behrensmeier, Simon Riedl, Nathan Rabideaux, Emily J. Beverly, Robin W. Renaut, Jessica W. Moerman, Daniel Deocampo, J. Tyler Faith, Anders Noren, Andrew S. Cohen, Kristina Brady Shannon, René Dommain, Institute of Geosciences, University of Potsdam, 14476, Potsdam, Germany

Abstract

The Koora Basin (south Kenya Rift) preserves a continental, tropical, one-million-year record of environmental change driven by global climate, regional tectonism and volcanism. Diatom-based reconstructions from Olorgesailie Drilling Project (ODP) cores indicate lakes that expanded and contracted with conductivities ranging between ~200 and >25,000 mS.cm⁻¹ and pH of 7.9–11.2. Benthic and planktonic diatoms document mostly shallow fresh water between 1 Ma and 870 ka with deeper freshwater lakes from 870 to 470 ka. After the Mid-Brunhes Event at about 430 ka, diatoms record many transgression-regression cycles with both freshwater and saline-alkaline lakes present. Palaeosols also indicate episodes of desiccation and lower water tables. Carbonates and zeolites are present in younger sediments, especially after 400 ka. Many high-lake-level stages correlate with low values in ocean benthic δ¹⁸O stack data. Most, but not all, low lake levels occurred during higher δ¹⁸O MIS intervals, suggesting tectonic and/or volcanic events, in addition to climatic forcing, influenced the drainage, outlet heights and accommodation space.

The 870–470 ka period of deeper freshwater lakes at Koora correlates well with the neighbouring Lake Magadi pollen record that suggests generally wetter conditions at this time. Wet-dry cycles after 470 ka at Koora developed when the Magadi record indicates a change towards drier conditions, but with many wetter intervals. High lake level periods at Koora also correlate with phases of diatom-inferred flooding at Magadi. Outcrops north of Koora also document several large lakes during deposition of parts of the Olorgesailie Formation prior to ~500 ka. The Koora environmental history helps to fill an environmental gap (500–320 ka) encompassing critical changes in hominin lithic technology caused by a hiatus at...
1. Introduction

Recent discoveries have pushed back the origins of *Homo sapiens* to about 315 ka (Hublin et al., 2017), and our history extends much deeper in time through hominin genera such as *Homo, Australopithecus, Ororitin* and *Sahelanthropus*. Our physical and cultural evolution has involved bipedalism, changes in body morphology, brain expansion and the development of a variety of stone tools. Palaeoanthropological research on these aspects of our ancestry has also stimulated an interest in environmental change as a factor in human evolution (deMenocal, 1995; Potts, 1998; Potts and Faith, 2015; Campisano et al., 2017; Faith et al., 2021). Potts (2013), for example, summarised how evolutionary events have variously been attributed to shifts, such as increasing aridity and changing environmental variability. A variety of controls have been suggested to explain the forces that drove environmental change in regional climate, including tectonism, northern hemisphere glaciation, ocean temperatures and the impact of variations in Earth's eccentricity, obliquity and precession (deMenocal, 2004; Sepulchre et al., 2006; Potts and Faith, 2015).

Research into the relationships between hominins and climate-environment drivers of evolutionary change has relied on studies of outcrops that contain fossil hominins or their stone tools (Owen et al., 2008a; Potts et al., 2018). Sedimentary records at these locations are commonly patchy in space and time so that important periods in hominin evolution tend to be associated with discontinuous environmental records (Cohen et al., 2009). Additional difficulties arise from a scale-related mismatch between finely resolved core-based records from distant marine locations, which average data over large regions (deMenocal, 1995), and the temporally-less-detailed basin-scale archives of hominin evolution (Campisano et al., 2017; Faith et al., 2021). The need for improved environmental histories that can be more closely tied to hominins has also stimulated an interest in environmental change as a factor in human evolution (deMenocal, 1995; Potts, 1998; Potts and Faith, 2006; Potts and Faith, 2015).

An aeromagnetic survey by Wohlenberg and Bhatt (1972) showed that a thick sequence of sediments underlies the Koora Plain in the south Kenya Rift. These middle-to-late Pleistocene deposits were drilled by the ODP, resulting in two cores (ODP-OL012-1A and -3A, Fig. 1A). In addition, the HSPDP team recovered two cores from Lake Magadi (Cohen et al., 2016; Campisano et al., 2017; Owen et al., 2018, 2019). Both sets of cores encompass sedimentary records for the last one-million-years near to the Olorgesailie Basin, which hosts abundant Acheulean and Middle Stone Age (MSA) tools (Deino and Potts, 1990; Brooks et al., 2018). However, despite the abundant artefacts at Olorgesailie, the environmental record there has numerous stratigraphic breaks related to erosion surfaces, non-deposition and pedogenesis (Behrensmeyer et al., 2002). Notably, a major hiatus separates lacustrine, fluviatile and terrestrial deposits of the Olorgesailie Formation (~1200–500 ka) from overlying middle to late Pleistocene cut-and-fill sediments of the Oltululei Formation (320–36 ka; Behrensmeyer et al., 2008).

The research reported here is based on interpretation of a 139-m-long core (ODP-OL012-1A) that penetrated ~4 m into a basal trachyte (Potts et al., 2020). The core is located on the western Koora Plain and ranges in age between ~1084 and 83.5 ka. Deino et al. (2019) previously presented the chronostratigraphy and Bayesian age-model of this core and Potts et al. (2020) provided a synthesis of diatom, geochemical, phytolith and other proxy data as a background to their examination of hominin evolution and resource usage. This study develops a detailed diatom record and palaeoenvironmental history for the Koora palaeolake sediments. Our aim is to 1) document a diatom stratigraphy for the ODP-OL012-1A core, 2) provide a palaeoenvironmental interpretation that helps to fill gaps associated with a major erosional hiatus (500–320 ka) and cut-and-fill cycles (320–97 ka) in the Olorgesailie Basin, and 3) compare the Koora palaeolake history with other parts of the southern Kenya Rift and global climate trends.

2. Geological setting

Fig. 1A and B shows the topographic and geological setting together with the location of modern lakes and their likely maximum Quaternary extent. The modern rift floor slopes southwards from about 1000 m above sea level (asl) near Olorgesailie through the Koora Graben (west of Mt. Olorgesailie) to the Koora Plain and on to the Siriata Graben (Fig. 1A) where diatomites and silts crop out. The Koora Plain lacks surface exposures, but Parkinson (1914) described ~14 feet of red clay resting on laminated silts, clays, diatomites, tuffs, pumice and shells (*Planorbis pfeifferi, P. gibbons, Isodora contorta*) in a 100-foot shaft dug in the early twentieth century. Busk (1939) subsequently marked an “old lake” south of Mt. Olorgesailie on his sketch of the rift valley. Although today’s drainage basins in the southern Kenya rift have limited interconnections, Baker (1958), Crossley (1976) and Marsden (1979) noted undated terraces, overflow channels and palaeo-drainage from the Koora Basin to Lake Magadi. Washbourn-Kamau (1977) and Baker and Mitchell (1976) reported a poorly dated late Quaternary megaflood that traversed the region from Lake Naivasha to Olorgesailie and possibly farther to Lake Magadi (Fig. 1A).

Over the last million years the rift floor has been cut by numerous north-south trending faults that have produced horsts and grabens, tilt blocks and fault ramps that define the many sedimentary basins in the region (Baker, 1958; 1986; 1986; Muirhead and Kattenhorn, 2018; Owen et al., 2019). Northeast–southwest lineaments rooted in subvolcanic basement (Fig. 1B) also control the location of cinder cones, hot springs groups and the southwestern margin of the Koora Plain.

Environmental change over the last million years is also represented in outcrops in the Magadi Basin, 10–15 km west of Koora. Several authors have described the discontinuous succession (Baker, 1958; Surdam and Eugster, 1976; Eugster, 1980; Behr, 2002; Owen et al., 2019), which includes a basal lacustrine limestone overlain by zeolitic lacustrine silt of the Olorga Formation (~780–300 ka). These deposits were tilted and eroded and then
capped by calcrete (Felske, 2016) prior to deposition of the “Green Beds” (lacustrine zeolitic silt and chert), dated at 191.8 ± 40 ka (Goetz and Hillaire-Marcel, 1992; Behr, 2002). The late Pleistocene to Holocene High Magadi Beds (lacustrine zeolitic silt, clay, ash, magadiite) are overlain by Holocene trona (Eugster, 1980). Owen et al. (2018) and Muiruri et al. (2021) described the geochemistry, mineralogy, diatoms and pollen content of a 194-m Lake Magadi core (HSPDP-MAG14-2A; Fig. 1A) that penetrated to trachyte dated at 1.08 Ma (Fig. 1B), and which provides an informative, temporally synchronous comparison for the data reported here.

3. Materials and methods

Differential GPS elevations from the coring locations were obtained using a Leica Viva system, which were post-processed using our own base station data and data from the RCMN (“Regional Centre for Mapping”, Nairobi) station. Structure-from-motion elevation data were collected in July 2016 and calibrated with the dGPS elevations. Basin-scale hypsometry was determined from the SRTM-30 m digital elevation model.

Core ODP-OL012-1A was drilled on the Koora Plain (Fig. 2) at an elevation of 845 m and penetrated to a depth of 166.14 m through middle to late Pleistocene sediments and into Magadi Trachyte flood lava. The upper 27 m was augered and the lower 139 m was cored (94% recovery) with 27 gaps resulting from no recovery, sediment loss or drilling disturbance. The core was sent to the US National Lacustrine Core Facility (LacCore) at the University of Minnesota (Minneapolis, USA) where it was logged, sampled and permanently archived. Loose homogenised samples were collected for diatom analyses at 1 m intervals from the upper augered part of the sequence. Core samples for diatom analyses were collected at regular 48 cm intervals, with additional samples related to lithological changes. After initial results were obtained, facies containing diatoms were further retrieved at 10 cm intervals, yielding a total of 600 samples for analysis.

Carbonate was removed from samples using dilute (10 %) HCl acid followed by rinsing with distilled water. Organic components were removed using H2O2 (Owen et al., 2008a). Known concentrations of silica microspheres (8 μm diameter) were added in order to estimate diatom abundance (Battarbee and Kneen, 1982), followed by drying on to slides and mounting with naphrax®.

In most samples at least 400 diatoms were counted with a maximum count of 1602. Where there were too few valves, all diatoms were recorded. Individual diatoms were counted when more than half of a valve was present. The apices of slender fragmented taxa were counted and divided by two to estimate their abundance.
Taxonomic identifications were made at 1000 x magnification based on Gasse (1986) and Krammer and Lange-Bertalot (1986, 1988, 1991a, 1991b). Diatom identifications were confirmed using a Leo 1530 Field Emission Scanning Electron Microscope. Diatom nomenclature was also updated to the most recent accepted taxonomic names using Algaebase (Guiry and Guiry, 2021).

Stratigraphic diagrams were drafted using C2 software (Juggins, 2007) with taxa forming >10% of the flora in at least one sample being included in order to reduce crowding in Figs. 4 and 5. This reduced the diatoms represented from 105 to 51 taxa with *A. agassizii* and its variety *malayensis* also merged in Fig. 4. Details of diatoms present at lower abundances are provided in full in supplementary Table S1 as both percentages and as counts. The selection process reduced the total count represented by the figures from 401,643 to 386,845. Taxa removed belonged to the genera *Cymbella, Caloneis, Campylodiscus, Amphora, Halamphora, Achnanthes, Anomoeneis, Luticola, Navicula, Sellaphora, Surirella, Iconella, Eunotia, Nizschia, Tabellaria, Terpsinoe, Pinnularia, Mastogloia* and *Stephanodiscus*.

Correspondence Analysis (CA) and Agglomerative Hierarchical Clustering (AHC) were used to explore the relationships between diatoms. The CA was performed on 65 common taxa (>3% in at least 2 samples or >10% in at least 1 sample) using CANOCO 4.51 (ter Braak, 1986). Agglomerative Hierarchical Clustering, using Pearson Dissimilarity, was carried out with XLSTAT for EXCEL and was applied to 38 taxa that occurred regularly in the samples (>5% in at least 3 samples or >10% in at least 2 samples).

Electrical conductivity and pH reconstructions are based on transfer functions and the ‘Combined Salinity’ dataset provided by the European Diatom Database (Battarbee et al., 1998) and used ‘Locally-weighted Weighted Averaging’ (LWWA) so that the data can be compared with diatom analyses by Owen et al. (2008a) at Olorgesailie. LWWA yields a local training set for each fossil sample using the 50 closest analogues defined by minimum chi-squared distance. Preference statistics suggested inverse deshrinking generated the better models for pH (RMSEP = 0.36, r² = 0.69, Mean bias = 0.01, Max bias = 0.71) and conductivity (RMSEP = 0.34, r² = 0.86, Mean bias = 0.02, Max bias = 0.76). Diatom habitats are based on the works of Gasse (1986, 1987), Gasse et al. (1995) and Zalat and Servant-Vildary (2007). The Simpson 1-D index was calculated using PAST 4.06 (Hammer et al., 2001) and ranges from 0 to 1 with low values representing equally present taxa and values of 1 indicating dominance by a single taxon.

4. Results

4.1. Chronology and sedimentology

The age model for core ODP-OL012-1A is based on 21 ⁴⁰Ar/³⁹Ar dates from tephra, one ⁴⁰Ar/³⁹Ar date (1084 ka) for the underlying Magadi Trachyte and the position of the Brunhes-Matuyama Chron boundary. The Bayesian age-depth model is fully described by Deino et al. (2019). This model takes into account pauses in sedimentation related to palaeosol development, other hiatuses in sedimentation, and intervals of markedly increased sedimentation.

Table 1 summarises the characteristics of 22 major facies with
Table 1: Major sedimentary facies in Core 1A. Terminology for diatomaceous sediments follows Owen et al. (2008a). See Fig. 3 for representative images.

<table>
<thead>
<tr>
<th>Primary Lithologies</th>
<th>Lithology code</th>
<th>Lithology, structure</th>
<th>Associated features and diatom content</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1. Massive diatomite.</td>
<td>Dm</td>
<td>Homogenous to vaguely bedded, white to pale yellow. Total silica up to 70%. Diatom frustules abundant, together with clay and minor silt, sometimes bioturbated. Carbonate variable, generally from 10 to 90%.</td>
<td>Shallow to deep-water Aulacoseira spp., sometimes with Thalassiosira and Cyclotella; sponge spicules/phytoliths present. Aulacoseira spp. common, saline species (Thalassiosira/Cyclotella) common; sponge spicules/phytoliths present.</td>
<td>Shallow to deep lakes with low clastic inputs.</td>
</tr>
<tr>
<td>F5. Diatomaceous silt/clayey silt/ sandy silt.</td>
<td>Zd/ Zcd</td>
<td>Massive to weakly bedded/laminated silts, clayey silts and sandy silts. Variable diatom content up to 70% of total components. Variable siliciclastics and volcanic glass. Variable carbonate content, mostly minor.</td>
<td>Mainly fresh to moderately saline diatoms. Varied benthic taxa common, especially C. placenta, E. Muelleri, C. elkab, N. frustulum, N. palea; phytoliths, sponge spicules.</td>
<td>Fresh to moderately saline shallow to moderately deep lakes and wetlands.</td>
</tr>
<tr>
<td>F6. Organic-rich clays.</td>
<td>Co/Zo</td>
<td>Amorphous algal organic matter up to 40% together with variable diatom, siliciclastic and volcanic glass components. Organisms sometimes in patches (as in image "F").</td>
<td>Generally low diatom abundance with shallow-water taxa dominant; phytoliths present; charcoal present.</td>
<td>Shallow lacustrine.</td>
</tr>
<tr>
<td>F13. Silty and sandy gravels (pumiceous) gravels.</td>
<td>Gs(p)</td>
<td>Clast-supported, pumice and siliciclastics. Poor to moderate sorting, commonly rounded pumice (generally < 3 cm).</td>
<td>Scarce often fragmented diatoms.</td>
<td>Pedogenically altered, fluvisiltily transported pumice and ash.</td>
</tr>
</tbody>
</table>
Table 1. Freshwater diatom assemblages (Table S1). Diatoms associated with differing facies are noted in Table 1. Freshwater *Aulacoseira* spp. comprise >75 % of the assemblages in subdiatomite (Facies F1 to F3) with saline taxa associated with F2 and silty units in F3. Laminated diatomite and clay (F4) contain at least 75 % *A. granulata* and *A. agassizii* with no saline planktonic species. Diatomaceous clay and silt facies (F5–F7) contain more varied benthic taxa. Pedogenically altered deposits (F8–F11) contain a variety of planktonic and benthic species reflecting pre-existing lacustrine and fluvial settings. Diatoms are scarce in reworked lake and floodplain deposits (F12–F14), and consist mainly of benthic taxa. Highly saline palaeolakes characterised by zeolites (F15–F18) lack diatoms, which probably did not grow during deposition, although post-depositional dissolution is also possible. Diatoms are absent in fluvial and debris flow units (F19–F22), other than as reworked fragments.

Visual identification of 41 zones was based on the presence or absence of diatoms, the proportions of benthic versus planktonic taxa and the percentage of saline diatoms (mainly *Thalassiosira* spp., *Cyclotella meneghiniana*) with each zone representing an average of ~24,400 years. The diatom stratigraphy is shown in Figs. 4 and 5, which groups the zones into five major stratigraphic units using criteria outlined below. Individual taxa referred to as ‘dominant’ comprise >25 % of an assemblage. Diatom assemblages are described as rare (<10³ valves g⁻¹), sparse (10³–10⁴ valves g⁻¹), common (1–6 x 10⁴ valves g⁻¹) and abundant (>6 x 10⁵ valves g⁻¹).

4.21. Unit I (161.80–134.5 m; −1006.8–460.5 ka)

Unit I is characterised by coarse-grained facies (F19–22) that
give way upwards to diatomaceous silt and subdiatomite (F1–5). The unit mostly contains 20–100% freshwater Aulacoseira spp. (Fig. 4) with sponge spicules and phyoliths present throughout. Diatom valves are common in Zone 1 (161.81–157.3 m), with Aulacoseira agassizii dominating and Aulacoseira granulata, Encyonema muelleri, Cocconeis placenta and Epithemia spp. also present. Zone 2 (157.30–149.48 m) diatoms are often fragmented and generally scarce or absent. Aulacoseira granulata dominates except near the base, which variably contains A. agassizii, C. placenta or Rhopalodia vermicularis. Nitzschia palea and A. agassizii increase close to the top of the zone.

Zones 3 (149.48–136.50 m) and 5 (134.9–134.5 m) contain common to abundant diatoms, dominated by A. granulata with Zone 4 lacking valves. Floral variations mainly reflect changing percentages of A. agassizii, A. ambigua, A. granulata var. valida, A. granulata var. angustissima, Cyclotella meneghiniana and rare Thalassiosira rudolfi. Encyonema muelleri, C. placenta and R. vermicularis dominate the scarce benthonic flora.

4.2.2. Unit II (134.5–107.07 m; ±460.5–254.5 ka)

Unit II is comprised of diatomaceous silt, subdiatomite and laminated diatomite and clay (Fig. 1–7). Pedogenic alteration is present (Fig. 8–11) as are examples of burrowed lake sediments (Fig. 4(C,E)). The assemblages are distinguished by the co-occurrence of saline and freshwater taxa with greater assemblage variability than Unit I. Zone 6 (134.50–131.90 m) contains abundant diatoms and low percentages of Aulacoseira with saline (T. rudolfi, Anomoeoneis sphaerophora, Cricatula elka) and euryhaline (C. meneghiniana) species increasing. Discostella pseudostelligera, Mastogloia braunii, Epithemia adnata, Nitzschia spp. and Rhopalodia gibberula are also regularly present (Fig. 4).

Zone 7 (131.90–131.32 m) is dominated by Hantzschia amphioxys and T. faurii in some samples. Zone 8 (131.32–130.02 m) is dominated by D. pseudostelligera and minor saline and benthonic taxa. Zone 9 (130.02–122.52 m) includes both freshwater and saline diatoms. Valves are common with A. agassizii dominating and T. faurii and A. sphaerophora consistently present. Cyclotella meneghiniana, A. granulata var. angustissima, E. muelleri, Rhopalodia spp. and Epithemia spp. are also present, with an increase in both benthonic and epiphytic diversity compared with zones 7 and 8.

Zone 10 (122.52–118.78 m) is characterised by common diatoms with high percentages of A. agassizii with A. granulata, E. muelleri, Epithemia sorgei, A. sphaerophora, R. gibberula and H. amphioxys variably present. Frustule abundances increase in Zone 11 (118.78–118.20 m) with A. granulata, A. granulata var. angustissima and T. faurii each ranging between 5 and 75% of the assemblages. Zone 12 (118.20–116.37 m) contains common to abundant valves comprised of >80 % Aulacoseira (A. granulata, A. granulata var. angustissima, A. agassizii, A. agassizii var. malayensis) and less frequent C. placenta, E. muelleri, C. meneghiniana, Pontosekiella ocellata, R. vermicularis and Ulnaria ulna.

Diatoms are common to abundant in Zone 13 (116.37–113.20 m) with A. agassizii and var. malayensis dominant through most of the zone and with less frequent A. granulata, C. placenta, Diploneis ovalis, A. sphaerophora, R. gibberula, R. vermicularis and H. amphioxys. Zone 14 (113.20–110.09 m) includes T. faurii and T. rudolfi together with Rhopalodia spp., Epithemia spp., A. sphaerophora, C. elka, M. braunii, C. placenta and Nitzschia spp. with intermittently present Discostella stelligera, D. pseudostelligera, A. granulata and A. agassizii.

Zones 15–16 contain fewer diatoms. Cocconeis placenta and Epithemia taxa dominate in Zone 15 (110.09–108.96) with Nitzschia spp. and Rhopalodia spp. also present. Hantzschia amphioxys dominates in Zone 16 (108.96–107.07 m) with A. agassizii and var. malayensis and R. gibberula also present.

4.2.3. Unit III (107.07–66.05 m; ~254.5–212.2 ka)

Diatoms are absent from large parts of the zeolitic sediments (Fig. 15–18) of Unit III. Where present, dissolution is minimal, including Zone 17 (107.07–101.80; Fig. 4) where D. pseudostelligera and E. argus dominate sparse assemblages in two separate samples. They are rare or absent in Zone 18 (101.80–100.90 m, Fig. 5), where A. granulata var. valida, C. meneghiniana and C. placenta dominate. Zone 19 (100.90–100.60 m) is dominated by either C. meneghiniana or D. pseudostelligera with less frequent D. stelligera, A. sphaerophora and R. gibberula. Zone 20 (100.60–97.73 m) includes common to abundant diatoms with the most frequent taxa including A. agassizii, C. meneghiniana, A. sphaerophora, R. gibberula, Epithemia argus, C. placenta, Rhopalodia gibba, Nitzschia spp. and Surtirella ovulis, which is absent in both zones 19 and 21.

Zones 21 (97.50–81.46 m), 23 (80.50–76.68 m) and 26 (74.21–66.05 m) lack diatoms. Zone 22 (81.46–80.50 m) contains frequent E. argus (10–79 %) and C. placenta (10–25 %). Zones 24 (76.68–75.74 m) and 25 (75.74–74.21 m) also contain sparse to common diatoms with E. argus dominant at many levels. Zone 24 includes variable percentages of A. agassizii, C. meneghiniana, T. faurii, D. ovalis, H. amphioxys and Nitzschia lancettula, which are absent or rare in Zone 25, where R. gibberula or H. amphioxys intermittently form >20 % of the assemblage.

4.2.4. Units IV (66.05–27.00 m; ~212.2–83.5 ka) and V (27.00–0 m; ~83.5–0 ka)

The sediments of Unit IV include clay, diatomaceous silt, subdiatomite, sand and palaeosols. Zeolites and less frequent dolomite and Mg-calcite are present in many horizons. Diatom assemblages are variable with zones dominated by freshwater or saline or mixed salinity taxa (Fig. 5). Zone 27 (66.05–64.78 m) contains sparse to common diatoms dominated by C. meneghiniana with R. gibberula comprising >15 % of the assemblages. Caution is required with interpretation of diatoms in Zone 28 (64.78–58.57 m) where diatoms are rare to absent and C. meneghiniana and E. argus are generally dominant with less frequent Aulacoseira species. Rhopalodia gibba is dominant in one horizon with very low abundance. Diatoms are common in Zone 29 (58.57–56.26 m) where E. argus and A. agassizii dominate and R. gibberula percentages increase.

Diatoms are abundant in Zone 30 (56.26–55.24 m), where A. agassizii and A. ambigua form the highest percentages with less frequent P. ocellata and E. soroex. Zone 31 (55.24–53.75 m) taxa are characterised by common diatoms with frequent saline species, including C. meneghiniana, C. elka and A. sphaerophora. Diatoms are absent to common in parts of Zone 32 (53.75–47.99 m) where benthic taxa (E. argus, E. adnata, R. gibberula, Rhopalodia hirundiformis, Nitzschia frustulum, N. pala) increase in percentage terms.
Fig. 4. Core ODP-OLO12-1A diatom stratigraphy versus core depth (below 102 m; Units I to lower III). Lithology to left with selected photographs. (A) Volcaniclastic sands and gravels and bedded gravels, (B) Faintly bedded subdiatomite, (C) Burrow in subdiatomite, (D) Laminated diatomite and clay, (E) Termite burrow in massive diatomite, (F) Zeolitic silty clay. Diatom stratigraphy and zones to the right include only common diatoms (>10% in at least one sample). Grey shading indicates intervals where diatoms are absent. See text for discussion.
Fig. 5. Core ODP-OLO12-1A diatom stratigraphy versus core depth (above 102 m; Units III to V). Lithology shown to left with selected photographs. (A) small channel cut into diatomite, (B) Massive subdiatomite, (C) Diatomaceous clay, (D) Zeolitic silty clay, (E) Massive subdiatomite, (F) Diatomaceous silty clay. Diatom stratigraphy and zones to the right include only common diatoms (>10% in at least one sample). Grey shading indicates intervals where diatoms are absent. See text for discussion.
Zones 33 (47.99–47.83) and 34 (47.83–45.48 m) contain sparse to common diatoms. The former zone is dominated by A. agassizii, which gives way to *H. amphioxys* in Zone 34 where *R. gibberula*, *C. meneghiniana*, *P. ocellata* and *A. granulata* are also intermittently dominant. *Caloneis bacillum* is relatively frequent (5–36%) in zones 33 to 35 compared with other parts of the core. Zone 35 (45.48–42.50 m) contains common to abundant valves generally dominated by *T. faurii*, with *T. rudolfi* and *C. meneghiniana* also intermittently dominant. The zone is also characterised by high apparent diversity, compared to both Zones 34 and 36, with the almost constant presence of all taxa represented in the diatom diagram, except *Aulacoseira* species. Zones 36 (42.50–41.48 m) and 37 (41.48–40.40 m) contain sparse to common valves. Zone 36 is dominated by *R. gibberula* with benthic taxa and diatoms often associated with very shallow swamps (*D. ovialis, H. amphioxys*) also present. Zone 37 is characterised by *C. meneghiniana* (20–95%) with less frequent *T. rudolfi*, *T. faurii*, *C. elkaab* and *D. pseudostelligera*. Zone 38 (40.40–37.73 m) is dominated by either *Aulacoseira agassizii* or *A. granulata* with the latter decreasing and finally disappearing towards the top of the zone.

Diatoms are variously absent, sparse or common in Zone 39 (37.73–28.98 m), where they are dominated by *R. gibberula*, *H. amphioxys*, *C. meneghiniana* or *Aulacoseira agassizii* with the latter increasing upwards. Zone 40 (28.98–27.00 m) contains sparse diatoms with *R. gibberula*, *A. granulata* and *E. argus* intermittently dominating. Diatoms are absent through most of the overlying sediments of Zone 41 (= Unit V), which are composed of loose augered silts, although rare *R. gibberula* were observed in several samples.

5. Discussion

5.1. Diatom ecological preferences

Fig. 6A shows a correspondence analysis (CA) for 65 taxa. Axis 1, which explains 66.6% of the variance, is related to water depth, suggested by a high correlation with the sum of the percentages of planktonic *Aulacoseira* and *Stephanodiscus* \((r = -0.959, p < 0.001)\). Planktonic diatoms are associated with positive axis 1 values with benthic taxa showing negative values. The axis data forms an important part of subsequent interpretations (Fig. 7). In contrast, Axis 2 (24.7% variance) reflects diatom salinity preferences, with saline species displaying negative values. *Discostella pseudostelligera*, *Nitzschia amphi-bida* and *Nitzschia recta* are commonly cited as freshwater taxa, but overlap with the field of saline diatoms in Fig. 6A. The latter diatom is relatively scarce among the assemblages with the two others, *D. pseudostelligera* and *N. amphi-bida*, also reported as salt tolerant (*Gasse, 1986*).

An Agglomerative Hierarchical Clustering (AHC) for 38 diatoms documents ten clusters at 0.5 dissimilarity (Fig. 6B), reflecting diatom ecological preferences. The latter are the basis for habitat interpretations shown in Fig. 7. Diatom groups I–IV include sub-aerial to shallow-water taxa associated with fresh to moderately saline water. Group I comprises *D. ovialis* and *Hantzschia amphioxys*, which are aerophilic and found in freshwater swamps and damp soils (*Owen et al., 2004, 2008b, 2008b*). Group II includes salt tolerant, littoral benthic *A. sphe-rophora*, *R. gibberula*, *Nitzschia communis* and *N. sigma*, which are present in waters of variable salinity and alkalinity (*Gasse et al., 1995; Legesse et al., 2002*). The littoral freshwater to mesohalobous *Surirella* ovialis also belongs to Group II (*Gasse, 1986*). In contrast, Group III taxa (*R. gibba*, *Gomphoneis gracile* and *E. adnata*) are predominantly oligohalobous, benthic and epiphytic, indicating shallow freshwater habitats with abundant macrophytes. Group IV (*N. amphi-bida*, *Sellaphora pupula* and *C. bacillum*) is dominated by fresh littoral taxa, often associated with springs (*Lee et al., 2013*, *Owen et al., 2004*) recorded these diatoms in wetlands and springs near Lake Bogoria with pH values of 7.2, 6.8 and 7.3, respectively. *Gasse (1986)* described them as freshwater littoral, crenophile taxa associated with slightly higher pH values of 7.67–8.44.

Groups V–VII are characterised by moderately to highly saline species. Group V includes brackish water, littoral *Mastogloia braunii* and *E. argus* (*Gasse, 1986*) together with *D. stelligera*, which is present in both planktonic and littoral settings in small dilute to mesohaline lakes (*Gasse, 1986; Owen et al., 2008a*). Group VI includes only planktonic *Thalassiosira faurii* with a conductivity optimum of ~9000 µS·cm⁻¹ (*Gasse et al., 1995; Telford and Lamb, 1999*). Roubex et al. (2014) suggested a much lower optimum of 400 µS·cm⁻¹, but this taxon is mostly found with other highly saline taxa. Group VII diatoms typically display negative values on CA axes 1 and 2, suggesting moderate to high salinity. *Cyclotella meneghina* is a facultative planktonic taxon associated with alkalinites of ~4–50 meq l⁻¹ (*Richardson et al., 1978; Zalat and Servant-Vildary, 2007*) and an optimum pH of ~8.85 (*Gasse et al., 1995*). *Curticula elkaab* is associated with *Nitzschia frustulum*, both reported from shallow saline settings and hot springs (*Owen et al., 2004, 2008b, 2008b*). Groups VIII to X are representative of freshwater lakes. Group VIII includes planktonic *Aulacoseira*. *Aulacoseira granulata* is common in freshwater lakes (conductivities = 47–1300 µS·cm⁻¹; pH = 6.5–9; *Gasse, 1986, 1987*) and is favoured by relatively high silica (>10 mg l⁻¹; Kilham and Kilham, 1975), outcompeting *A. ambiguus* and *A. agassizii* as phosphorus increases and light levels decrease. *Aulacoseira agassizii* and variety *malayensis* are present in shallow dilute water (<500–1100 µS·cm⁻¹; pH 8–8.5; *Richardson and Richardson, 1968; Gasse, 1986*). Planktonic *A. ambiguus* is favoured by fresh shallow water (<7 meq l⁻¹; pH 6.5–8) on the margins of larger lakes (*Richardson et al., 1978, Gasse et al., 1995*), suggest a pH optimum of ~8.5 for *P. ocellata*. All Group VIII taxa were common in the Olorgesailie palaeolakes to the north (*Owen et al., 2008a*).

Group IX includes littoral, epiphytic, freshwater *Comophenies cleveii* and *Ulnaria ulna* with pH optima of 6.43 and 7.71, respectively (*Gasse et al., 1995*). The latter taxon is capable of entering the plankton, but its association with *C. cleveii* suggests a shallow setting (*Gasse, 1986*). Group X is dominated by freshwater to slightly brackish, littoral and epiphytic diatoms such as *Amphora ovalis*, *E. sorex* and *E. muellerii*, which are found in lakes with a pH > 8, together with epiphytic *C. placentula* (pH 7.5–8). Limno-biotic *R. vermicularis* is also present but is found in a variety of fresh to hyperalkaline waters (*Gasse, 1986*).

5.2. Environmental stratigraphy

Fig. 7 shows diatom-based habitat, conductivity and pH data plotted against the Koora age model (*Deino et al., 2019*). CA Axis 1 is also plotted and serves as a proxy for relative water depth, reflecting benthic vs. planktonic taxa, with positive values indicating deeper water. Diatom diversity is reflected in the Simpson 1-D index, with the highest values associated with shallow lake phases, especially during Zones 2, 6, 14 and 20.

Aquatic deposition was interrupted by desiccation and soil formation 30 times with increased frequency after 400 ka, or by minor erosion events (Fig. 7) (*Potts et al., 2020*). Termite and other non-aquatic burrowing organisms penetrated through lake sediments (Fig. 4CE) with non-deposition surfaces also indicating termination of lacustrine episodes (Fig. 5A). Diatoms are absent in several segments of the core. This is partly explained by terrestrial deposition, but other processes such as dilution by volcanicslastics, fragmentation and winnowing, or dissolution could also explain an absence
Fig. 6. Statistical representations of diatom assemblages. A) Correspondence Analysis. Freshwater planktonic and benthic forms separated along Axis 1. Axis 2 reflects salinity with highly saline taxa concentrated in the lower left and characterised by negative values. B) Agglomerative Hierarchical Clustering of diatoms showing ten diatom groups at 0.5 dissimilarity.
of diatoms. The presence of zeolitic laminated sediments with no diatoms suggests lake and/or pore waters were highly alkaline, which may have caused post-mortem dissolution. However, the absence of diatoms may also reflect their absence in these palaeolakes.

5.2.1. Unit 1 (~1006.8–460 ka; 161.8–134.5 m)

The lacustrine sediments in this unit were laid down in deep to shallow freshwater lakes that periodically dried out (Fig. 7). It is also important to note that this part of the core is temporally less well sampled and may underestimate environmental/climate variability than the better-resolved younger sediments above. Zone 1 (~1007–891 ka; 161.81–157.3 m) is associated with diatomaceous silt and subdiatomite (Facies 1 and 5; Table 1). The diatoms (Assemblages I and II, Fig. 6B) are typical of shallow dilute water. *Aulacoseira agassizii* are present together with epiphytic species (Figs. 5 and 7), indicating intermediate water depths and/or nearby shallow habitats with aquatic macrophytes. Transfer functions suggest conductivities of 300–1000 μS.cm⁻¹ and pH values of 8–8.8. Occasional lake desiccation is indicated by pedogenesis and minor erosion surfaces (Fig. 7).

Zone 2 (~891–713 ka; 157.30–149.48 m) is characterised by fresh to mildly alkaline benthic and epiphytic taxa, in low to moderate numbers, together with *A. granulata* (Assemblage VIII, Fig. 6B), which indicates a series of shallow to moderately deep waters (Fig. 7). Transfer functions indicate 250–900 μS.cm⁻¹ with a pH of 8–9. Diatoms are partially fragmented, reflecting some reworking. In contrast, fluvial and terrestrial conditions are
indicated by the presence of pedogenic alteration, minor erosion surfaces and coarse-grained quartzo-feldspathic facies (F19–F21, Table 1; Fig. 4A), several of which fine upwards. The zone shows at least three cycles from shallow to deeper lake and back again, with the P4 palaeosol capping a regression. The erosion surface (E2) is developed immediately above a eutrophic cycle and is followed by benthic assemblages, suggesting a shallowing event.

Zones 3 (~713–503 ka; 149.48–136.50 m) and 5 (~476–460 ka; 134.9–134.5 m) include a variety of diatom facies characterised by an increase in planktonic taxa, mainly A. granulata, reflecting deeper water than Zones 1 and 2 (Fig. 7). Nevertheless, conditions did vary with palaeosols indicating emergence. Parts of Zone 3 also include Thalassiosira suggesting intervals with higher conductivities (up to 19,000 μS.cm⁻¹) although most of this zone is characterised by values < 5000 μS.cm⁻¹. Furthermore, a lack of diatoms in Zone 4 coincides with a modified clay that may have been disturbed by drilling mud.

5.2.2. Unit II (~460.5–254.5 ka; 134.5–107.07 m)

Unit II sediments were laid down in hypersaline to fresh and shallow to deep lakes, which periodically dried out (Fig. 7). CA Axis 1 suggests that shallow palaeolakes dominated during most of Unit II times, but with several deeper lake phases. Deeper lakes led to accumulation of massive, bedded and laminated subdiatomite and diatomite (F1–F4, Table 1; Fig. 4B–E). However, these lacustrine sediments were repeatedly exposed and subjected to pedogenic alteration giving rise to a series of palaeosols (P11–P18). The top of one prominent soil horizon (P16, Fig. 7), for example, is overlain by finely laminated diatomite and diatomaceous clay (Zone 11, Fig. 4D) reflecting either a rapid change from a land surface to a deep freshwater lake or reduced sediment input to the depocenter, with increasing sediment storage up-dip during transgression. Higher in the sequence, Zone 14 also includes diatomite that was subsequently buried by termites after desiccation (Fig. 4E).

Increased salinities are implied by the presence of authigenic carbonates (calcite, Mg-calcite, dolomite) in the sediments. Very saline palaeolakes are indicated by diatom assemblages VI and VII (Fig. 6B) in parts of Zones 6, 9, 11, 12 and 14, with diatom-inferred conductivities that exceeded ~10,000 μS.cm⁻¹. Benthic species are also present in all of these zones, with common freshwater planktonic diatoms (Assemblage VIII, mainly A. granulata and A. agassizii) mixed with saline species in Zones 9 and 11. The coexistence of saline and freshwater diatoms suggests either: 1) fresh deep waters that become seasonally or periodically more saline and perhaps shallower, followed by mixing of the different taxa in the sediments, or 2) the development of seasonal or periodic stratification with fresh water lenses overlaying saline bottom water (Barker et al., 1990; Muiruri et al., 2021).

Salinity was generally reduced during formation of Zones 7, 8, 10, 13, 15 and 16, with inferred conductivities <8000 μS.cm⁻¹ and pH values of about 8.1–10. Freshwater lakes (~200–2200 μS.cm⁻¹) were also present during Unit II times and were variably dominated by A. granulata (Zone 5), D. pseudostelligera (Zone 8) and A. agassizii (Zone 10) (Fig. 4). Relatively shallow wetlands and swamps developed during the termination of Zone 13 and through Zone 16, which contain common H. amphioxys and A. agassizii. The uppermost sediments of Unit II include shallow water diatoms (Zones 15 and 16) with an increase in planktonic Aulacoseira toward the top of Zone 16 that suggests a deepening phase prior to regression and the development of a palaeosol (P18, Fig. 7).

5.2.3. Unit III (~254.5–212.2 ka; 107.07–66.05 m)

Unit III includes 41 m of sediment with diatoms present in only about 14 m (Figs. 4 and 5). In temporal terms, diatoms were accumulating through about 20 of the 43 kyr spanned by these deposits. This interval was characterised by increased inputs of tephra and deposition rates (Deino et al., 2019). Unit III was laid down in a series of saline to hypersaline lakes given the presence of carbonates and especially zeolites (analcime, phillipsite, mordenite and natrolite), which are common in the laminated and massive silt and clay (Figs. 5D and 7). Carbonates likely formed in the water column following evaporative concentration or microbial blooms that changed pH conditions (Kelts and Hsü, 1978). Zeolites reflect the alteration of volcaniclastic glass in saline, alkaline lake or pore water either at the time of deposition or during early diagenesis (Surdam and Eugster, 1976; Owen et al., 2019), which, in turn, implies high evaporation rates and basin closure. The highly regular lamination in many parts of these deposits (Fig. 5D) indicates sufficient water depth to prevent wave-induced erosion and perhaps bottom water-anoxia (i.e. stratified lake) to prevent bioturbation from aquatic organisms. Palaeosols (P19–P22) and a minor erosion surface (E6) also suggest intermittent exposure.

The diatomaceous deposits include massive to faintly bedded calcareous silt and subdiatomite (F2, Table 1; Fig. 5A–C). Zones 18–20, 22, 24 and 25 all include common benthic taxa suggesting shallow lakes (Fig. 7). Shallow water, saline taxa (Assemblages II and VII, Fig. 6B) are common with C. meneghiniana, A. sphaerophora or R. gibberula. Very shallow conditions are suggested by the presence of H. amphioxys in Zone 25. These diatomaceous zones formed in lakes with extremely variable conductivities ranging from 200 to 22,000 μS.cm⁻¹ and with pH values of 7.6–10.1. The coexistence of both freshwater benthic taxa and saline species might reflect seasonal or occasional flooding of an otherwise shallow saline lake. In contrast, Zone 24 contains common freshwater, planktonic and benthonic diatoms (e.g., A. agassizii and C. placentula), which indicate a short-term freshening and deepening of the Unit III palaeolakes.

Holocene Lake Nakuru in the central Kenya Rift may provide a somewhat similar example of extreme environmental variability over millennial time scales. Today, Lake Nakuru is shallow with conductivities of 23,100 to 96,200 μS.cm⁻¹ (Jirsa et al., 2013). In contrast, during the early Holocene it was much expanded due to moister climates and was at least 100 times less concentrated than today (Richardson and Dussinger, 1986).

5.2.4. Unit IV (~212 ka–83.5 ka; 66.05–27.00 m)

Unit IV is characterised by a return to variable saline and freshwater lakes. Mg calcite and dolomite are intermittently present with analcime and/or phosphosite common in Zones 27–32 and analcime in Zones 33–39, indicating episodes of elevated salinities (Fig. 7). Diatom abundance fluctuates considerably being highest in Zones 29–31, 35 and 37 with the diatoms including abundant benthic and epiphytic species that are associated with freshwater and saline settings. Cyclotella meneghiniana, R. gibberula and H. amphioxys are more common than in Units I–III suggesting high salinities associated with lake shallowing. Salinities exceeded 10,000 μS.cm⁻¹ for at least those parts of the time represented by Zones 27–28, 31, 33, 35 and 37 (Fig. 7), which likely reflect loss of overflow at these times and significant regressions given relatively low CA values and the repeated development of palaeosols at these times. Intermediate salinities of 3000–10,000 μS.cm⁻¹ developed during formation of Zones 30, 34, 36, 38, 39 and 40. Relatively fresh periods also prevailed through parts of Zones 32, 38 and 39.

CA Axis 1 suggests that water depths were mostly shallow to intermediate (Fig. 7). However, dominance by planktonic A. granulata and A. agassizii indicates three deeper water phases and several intermediate lake levels. The saline diatoms T. fourieri and T. rudolfi are common in Zone 35 along with several benthic species, suggesting that the palaeolake was relatively shallow. Palaeosols continue to overprint aquatic deposits, confirming alternating
episodes of exposure and flooding of the Koora Basin.

5.2.5. Unit V (83.5 ka to present; 27.0–0 m) and palaeolake termination

Unit V was augered due to its friable nature and consists of clayey silt and gravelly sand (F22, Table 1). Diatoms are rare and, where present, are dominated by *R. gibberula*, suggesting ephemeral wetlands in an otherwise terrestrial sequence. The observations are in line with a major lake regression.

The cessation of lacustrine deposition at the coring site represents a major event in the palaeoenvironmental history of the Koora Basin. Hypsometric analysis based on the present basin morphology indicates that the last Koora palaeolake could not have risen above 860 m, because this is the maximum elevation of the southwestern basin margin, assuming that the outlet has been relatively stable. The inferred palaeolake would have extended over a north–south distance of ca. 35 km, was at least up to 86 m deep and hosted a minimum lake volume of 5.2 km3 (Fig. 8A–C). The ODP-OLO12-1A core location has a present elevation of 845 m, so the 860 m lake surface represents the last possible highstand when the core site was covered by the palaeolake. Field observations (Fig. 2C) and structure–from–motion elevation data reveal a shoreline presently at 850 m elevation on the eastern side of the basin margin (Fig. 2C). This shoreline indicates that the geometry of the Koora Basin has a complex history which involved normal faulting with a throw of at least 30 m between eastern and western basin margins. Hence, the hypsometric data are only applicable for the last stage of the Koora lake, but earlier lake phases may have had similar lake depths.

Fig. 8D–E shows north–south elevation profiles and their locations along the western margin and the central axial floor of the Koora Basin with an inferred lake level for about 80 ka. A lake at an elevation of 860 m resulted in overflow along a >5 km wide front over the southwestern trachyte horst towards Lake Magadi, which helps to explain the large lateral extent of a series of parallel sand and boulder bars previously attributed to a megaflood event (Figs. 2D and 8F; Baker, 1958; Marsden, 1979). This overflow elevation suggests that the minimum depth at the coring site when the last of the deep–water *Aulacoseira* assemblages were flourishing was about 42 m (Fig. 8D). At that time there may also have been inflow from a Palaeolake Kwenia into the north–eastern Koora Basin (Fig. 1).

Subsequently, an outlet was cut into the southwestern trachyte horst, which caused a significant lake level drop that resulted in the deposition of fluvial and ephemeral wetland deposits on top of Units I–IV at the ODP-OLO12-1A core site.

5.3. Regional correlations

Regional correlations between Koora, Lake Magadi and Olorgesailie are shown in Fig. 9. The Koora diatom CA reflects relative water depth with values > 0 representing deeper water (D1–D24). At Olorgesailie, outcrop evidence indicates terrestrial deposition and pedogenesis dominated prior to 750 ka (Potts et al., 2018; Behrensmeyer et al., 2018). The Koora diatom data indicate initially shallow to intermediate lakes with deeper water developing after about 870 ka (lakes L1 to L2, Fig. 9). Magadi pollen (HSPDP-MAG14-2A) are absent for earlier periods, but the presence of laminated sediments and authigenic carbonates (Owen et al., 2019) indicates fresh to moderately saline lakes from 1000 to 725 ka. Subsequently, the Koora lakes L3–L4 (~725–475 ka) coexisted with intermittent and expansive freshwater lakes at Olorgesailie during a period when mainly positive Magadi pollen PCA data suggest generally wetter conditions.

Olorgesailie environmental data for the 500–320 ka period is missing due to erosion, but is preserved at Koora and Magadi. Periods with negative values in the Magadi pollen data (Fig. 9) reflect increases in *Acacia* (*Vachellia*), other forest taxa and herbaceous plants, combined with decreases in *Cyperaceae* and *Podocarpus* (Owen et al., 2018), suggesting drier phases. Planktonic diatom percentages from Lake Magadi (Owen et al., 2018, 2019) indicate high variability between about 580 and 300 ka, with diatoms disappearing at times when the Koora Basin was dry or occupied by shallow lakes. Calcretes capping the Oloronga Beds at Magadi are poorly dated, but likely formed after 440 ka (Owen et al., 2019) and represent a major event in the palaeoenvironmental history of the Koora Basin. Hypsometric analysis based on the present basin morphology indicates that the last Koora paleolake could not have risen above 860 m, because this is the maximum elevation of the southwestern basin margin, assuming that the outlet has been relatively stable. The inferred palaeolake would have extended over a north–south distance of ca. 35 km, was at least up to 86 m deep and hosted a minimum lake volume of 5.2 km3 (Fig. 8A–C). The ODP-OLO12-1A core location has a present elevation of 845 m, so the 860 m lake surface represents the last possible highstand when the core site was covered by the palaeolake. Field observations (Fig. 2C) and structure–from–motion elevation data reveal a shoreline presently at 850 m elevation on the eastern side of the basin margin (Fig. 2C). This shoreline indicates that the geometry of the Koora Basin has a complex history which involved normal faulting with a throw of at least 30 m between eastern and western basin margins. Hence, the hypsometric data are only applicable for the last stage of the Koora lake, but earlier lake phases may have had similar lake depths.

Fig. 8D–E shows north–south elevation profiles and their locations along the western margin and the central axial floor of the Koora Basin with an inferred lake level for about 80 ka. A lake at an elevation of 860 m resulted in overflow along a >5 km wide front over the southwestern trachyte horst towards Lake Magadi, which helps to explain the large lateral extent of a series of parallel sand and boulder bars previously attributed to a megaflood event (Figs. 2D and 8F; Baker, 1958; Marsden, 1979). This overflow elevation suggests that the minimum depth at the coring site when the last of the deep–water *Aulacoseira* assemblages were flourishing was about 42 m (Fig. 8D). At that time there may also have been inflow from a Palaeolake Kwenia into the north–eastern Koora Basin (Fig. 1).

Subsequently, an outlet was cut into the southwestern trachyte horst, which caused a significant lake level drop that resulted in the deposition of fluvial and ephemeral wetland deposits on top of Units I–IV at the ODP-OLO12-1A core site.

5.4. Climate correlations and tectonic controls

Sedimentary basins in the south Kenya Rift document environmental changes through the last million years that reflect both tectonic and climatic change. Isolation forcing of East African precipitation has been suggested by several researchers (Kutzbach and Otto-Bliesner, 1982; deMenocal, 1995) with models relating northward expansions of summer monsoon rainfall to orbitally forced increases in northern summer insolation, and perhaps contributions from Mediterranean-sourced winter rains in northern East Africa. These relationships have been explored in some detail by Kutzbach et al. (2020) who modelled the impacts of changing greenhouse gases, ice sheet volumes and orbital parameters, including axial precession, tilt and orbital eccentricity. Within the tropical zone, which encompasses the Koora Basin, they noted that equatorial rains were likely ~10–15 % lower during glacial periods, when CO$_2$, tropical temperatures, and convection were all lower.
Fig. 8. The ~80-ka palaeolake, palaeolake termination and drainage. A) Palaeolake extent based on the overtopping elevation of 860 m over the southwestern horst margin (shown in “D”). B–C) Hypsometric analysis based on the modern basin topography from a SRTM-30 m digital elevation model, indicating lake area and volume for differing shoreline elevations. D) N–S elevation profiles, shown in “E”, extracted from the 5 m ALOS Global Digital Elevation Model. Lake depth at the coring location was ca. 37 m. Subsequent outlet erosion caused a lake level fall and lake retreat from the coring site that led to alluvial deposition on top of the lacustrine sediments of Units I–IV. E) Transect lines in “D”. F) Panchromatic optical image showing boulder bars (white arrows) formed by overtopping of the southwestern horst margin of the Koora Basin. Area partially shown in “A” would have drained to Lake Magadi further west.
The diatom record from ODP-OLO12-1A provides an opportunity to compare equatorial lake level change and global climate records (Fig. 10). The last one-million years have been associated with large variations in the scale and timing of glacial-interglacial climates. Both marine and lake records (Lisiecki and Raymo, 2005; Clark et al., 2006; Johnson et al., 2016) suggest changes in the dominant climate periodicities from an obliquity-controlled 41 ka cycle to an eccentricity-controlled 100 ka cycle, a period that has been referred to as the Mid-Pleistocene Transition (MPT) (Tziperman and Gildor, 2003). The MPT has been generally placed between 1250 and 700 ka (Clark et al., 2006). Based on an 18O stable isotope record from marine foraminifera, Crundwell et al. (2008) defined four stages (Fig. 10) and recognised the early-MPT as starting only at \sim870 ka (Fig. 9). Head and Gibbard (2015) noted major changes at about 900 ka in marine biota and environment. Evidence of similar changes in Africa have been less clear. However, a variety of proxies from Lake Malawi sediments suggest significant environmental change after \sim800 ka (Ivory et al., 2016) and \sim900 ka (Johnson et al., 2016) that may reflect either tectonic shifts in accommodation space and/or a transformation from variable and drier climates to more humid conditions. A recent Koora bulk organic carbon isotope (13C OM) record from core OLO12-1A also shows a shift to a more positive values after 750 ka, suggesting higher C$_4$-plant dominance in the vegetation near the end of the MPT (Lupien et al., 2021).

The Koora diatom CA record (Fig. 10) reflects changes in relative water depth and is viewed here in the context of the MPT subdivision of Crundwell et al. (2008). Fig. 10 also shows the diatom proxy data with associated age uncertainties along the y-axis (Potts et al., 2020). These age uncertainties complicate comparisons, particularly in the lower core where there are relatively large temporal sampling gaps. Potts et al. (2020), for example, noted that only 11 % of the variation in the CA axis of the entire core-record followed orbital cyclicity. However, the low detection of orbital cyclicity could be due in part to the low sampling resolution in the early part of the record (≥ 500 ka), which limits identifying precessional frequencies.

Deeper lakes are represented by more positive CA values, which variably correlate with some of the negative excursions in the 18O benthic stack data that document interglacial episodes (Lisiecki and Raymo, 2005). During the pre-MPT period, the Koora lakes were shallow and fresh with small CA peaks (D1–3, Fig. 10) that overlap with less pronounced interglacials (MIS 28b, 27 and 25e, Fig. 10). No equivalent to MIS 23c was recognised, although sampling in this part of the Koora core is of low resolution and may not pick this out. The onset of the early-MPT in the Koora Basin experienced a major palaeolake deepening at \sim870–850 ka and the formation of a later series of freshwater lakes that continued through much of the next 350 kyr. Although age uncertainties are large (Fig. 10) and samples are few in this part of the core, this deepening (D4) could suggest response to an increase in the intensity of interglacials with MIS 21g. Through the remaining early and late MPT, correlations are generally poor with relatively deep lakes (D5–D14) prevailing, except for major regressions between D5 and D6, where the B-M boundary also improves age model accuracy. Other notable regressions took place between D6 and D7 and D11 and D12, but with lakes remaining deep even during the glacial MIS16a.

A major shallowing took place at \sim470–390 ka, around the time of the Mid-Brunhes Event (MBE) at \sim430 ka, which represents a climate transition towards higher amplitude glacial-interglacial variation (EPICA Community Members, 2004). The MBE also partially overlapped with Marine Isotope Stage 11 (424–374 ka), the longest and warmest interglacial of the last half million years (Howard, 1997). During post-MPT times, lakes were comparatively more variable than the benthic 18O record, but with several events that show good correlation with the marine record (9c/e and D17–18; 5e and D23; 5a and D24). The core does not preserve sediments equivalent to MIS1–4.

The three south Kenya Rift basins show broad similarities in environmental variability with all suggesting: 1) relatively low lakes or stable land surfaces during the Pre-MPT, 2) evidence for wetter conditions and higher lakes at least between about 750 and 500 ka, 3) lower lakes and drier conditions or erosion (Olorgesailie) around the Mid Brunhes Event, followed by 4) variable conditions through the Post MPT. These comparisons suggest that Pleistocene global climate change affected the southern Kenya Rift, but also that other factors such as regional to local tectonic controls are also represented in the lake depth cycles of the different basins.

Lake fluctuations that do not correspond to global climate patterns could reflect tectonic controls at the local basin scale. Accommodation space, for example, was initiated by grid faulting, which fractured the underlying Magadi Trachyte Formation into a series of north-south horsts and grabens. Baker and Mitchell (1976) suggested that fault activity developed progressively with three phases of displacement highlighted at about 1300, 900–600 and 400–240 ka. Magadi and Koora drilling evidence indicate that the basal trachytes are essentially identical in age, with these flood lavas extending to Olorgesailie. So, this region was essentially flattened by flood volcanism, but soon thereafter the area was subdivided by faulting, probably co-genetic with the volcanism. Owen et al. (2019) also noted that loss of transition metals in their Lake Magadi core likely reflected drainage diversion at about 540 ka in the western part of the south Kenya Rift, suggesting an additional phase of faulting, close to the onset of erosion at Olorgesailie.

Drainage changes may also impact the lake level record. Today, the major source of water to the Koora Plain is from the Ol Keju Nyiro River, which drains areas to the north and the eastern rift margin. The latter area is crossed by a series of tributaries that might form a single river that turns north to the Oltepesi Plain at “Lc. 2” in Fig. 1A. Speculatively, past fault movements, or autocyclic avulsion, could have led to the former river switching to a southward route to the neighbouring Kwenia Basin (east of the Koora Plain, Fig. 1A), potentially interrupting water supplies to the Koora Basin, although during wetter periods overflow into the Koora Basin near Oolkululu (Lc.1, Fig. 1A) may have re-established hydrological connectivity. Similar switching processes have been noted from Summer Lake and Lake Abert in the US Basin and Range (Davis, 1985). Evidence for complex drainage changes has also been reported by Marsden (1979), who noted that there are several wind and water gaps cutting through horst blocks, implying that parts of the drainage system may predate grid faulting.

Volcanism can also affect accommodation space through the infilling of basins. Sedimentation rates have clearly varied through the last million years at Koora with major increases taking place during Unit Ill times (\sim255–212 ka) due to increased inputs of tephra (Deino et al., 2019).

5.5. Late quaternary environments and hominins

Potts et al. (2020) synthesised environmental data from multiple records in ODP-OLO12-1A that suggested considerable environmental variability beginning by around 400 ka. This phase of variability lies within the 500 to 320 ka interval at Olorgesailie, during which a major change from Acheulean to Middle Stone Age tools took place, and also includes a period of major mammal turnover. Potts et al. (2020) framed their discussion of hominins in terms of resource landscapes and how these affected ecological dynamics, reporting that diatom taxonomic variability changed considerably through the last million years.

Prior to 425 ka, diatom interassemblage variability was
The diatom transfer function data reported here provide greater detail on the aquatic resources through this period, indicating relatively low pH (~7–9) and conductivities (<1000 μS.cm⁻¹), with only six samples suggesting values rising above 10,000 μS.cm⁻¹. Interassemblage diatom variability increased between 425 and 350 ka (Potts et al., 2020), reflecting greater temporal habitat change (shallow to deep lakes), with pH (8–10) and conductivity (<500 to 12,000 μS.cm⁻¹) values also trending slightly higher, which would have impacted hominins given that modern humans have an upper limit for potable water of only about 2500 μS.cm⁻¹ (Potts et al., 2020). Variability in water resources peaked during the subsequent 270 kyr with lakes deepening and shallowing many times along with variations in conductivity (<500 to >16,000 μS.cm⁻¹) and pH (7.5–10.5).

These changing environments would have exerted considerable pressures on hominin ecological interactions as posited by Potts et al. (2020). Lakes alternated between fresh and saline status many times, which may have forced hominin groups to periodically rely on rivers and springs for potable water (Barboni et al., 2019) or perhaps to disperse elsewhere. For example, a major lake shallowing between 470 and 390 ka suggests drier conditions that would have changed the resource base for hominins in the region.

Major environmental changes started with the onset of the early-MPT and were partly driven by global climate. The 470–390 ka event may also reflect a global climate link, at least in part, given that it overlaps with the warmest interglacial since the onset of the late-MPT. This event was followed by increased environmental variability, with lakes rapidly filling their basins only to...
repeatedly dry out again. However, departures from these influences are shown by lakes remaining high during some high $\delta^{18}O$ intervals, suggesting regional-scale tectonic and/or volcanic impacts (changing topography and lake basin geometry, drainage diversions, volcanic damming) on local environments and hominin resources. Consequently, understanding environmental variability and the evolutionary pressures that these changes exerted on hominins in the Koora, Magadi and Olorgesailie basins requires a consideration of three different potential controls - global climate, regional tectonism and volcanic activity. Changes in moisture availability and climate variability, combined with a tectonically modified landscape, exerted significant pressures on resources and ecological interactions that, in turn, could have led to significant selective/adaptive pressures on our human ancestors.

6. Conclusions

Diatoms in the Koora Basin document a one-million-year history of environmental change that reflects global climate controls, regional rifting and volcanism. Some environmental changes correlate in time with glacial-interglacial stages, but others do not. The palaeolakes in the Koora Basin were shallow and fresh between 1000 and 870 ka. Fresh and generally deeper lakes prevailed between 870 and 470 ka. A major lake shallowing took place between 470 and 390 ka, reflecting a decrease in moisture availability corresponding in part to a marked global interglacial to glacial transition (mid-Brunhes Event). This was followed by highly variable conditions with lakes rapidly expanding, contracting and desiccating through to the top of the core record at ~83 ka. Koora mineralogical data also confirm a trend towards saline lakes and variable moisture availability after ~470 ka as do increasingly frequent episodes of pedogenesis.

The periodic development of extensive freshwater lakes at Olorgesailie after about 750 ka broadly correlates with the appearance of extensive lakes in both the Koora and Magadi basins. Subsequent changes in the Koora palaeolake are reflected across the south Kenya Rift with sedimentological, mineralogical and diatom evidence indicating that the lake at Magadi trended towards increasing salinity reflecting a long-term change to drier conditions. At Magadi, diatoms record a post-500 ka record that shows that a lake or shallow mudflats were continuously present and probably supported by springs at times when the Koora Basin was dry. However, benthic diatoms suggest multiple flood events that correlate with high Koora lake levels that signify wetter periods. Magadi pollen also indicate floral changes in the south Kenya Rift that indicate broadly drier conditions, interrupted by wetter intervals, after about 500 ka.

The changes in the Koora Basin and other parts of the south Kenya Rift were driven by global climate changes, regional tectonism and volcanism, producing a complex landscape with relatively moist settings replaced by generally drier conditions with wetter intervals during and after the Mid-Brunhes Event. These changes with their impacts on ecological resources may help to explain faunal extinctions and a major change from Acheulean to MSA artefacts that required adaptation to an increasingly complex resource base.

Author contributions

VM and RBO conceptualised the diatom-based study, carried out diatom analyses and wrote the manuscript with support from RD and SR. RP and AKB selected the drilling location and supervised field work. SR and RD contributed survey data, hypsometric analysis and analysis of the palaeolake termination. ALD and RD provided chronological aspects of the research. EJB provided palaeosol

Fig. 10. Comparison of Koora deep water phases with the global climate record. Note deeper-water peaks (D1–D24), several of which correlate with labelled interglacial stages in the benthic foraminiferal oceanic $\delta^{18}O$ record (to right), but with others that do not. Good correlations discussed in text shown in bold. ^{18}O data after Lisiecki and Raymo (2005) with MIS labelling after Railsback et al. (2015). Age model uncertainty shown along y-axis. The x-axis shows analytical uncertainty (after Potts et al., 2020). Purple (darker) envelopes reflect 68 % confidence interval with bluey-grey (lighter) indicating 95 % confidence, based on analytical and age model errors (Deino et al., 2019). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
data. NR and DD provided mineralogical data. KBS, RD and AN provided field and laboratory support. All authors contributed to discussion, editorial work and interpretations.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by the National Museums of Kenya, the Oldonyo Nyokie Group Ranch, and the Olorgesailie field team led by J.M. Nume and J.N. Mativo. Research and drilling permits were provided by the Kenyan National Council for Science and Technology, the Kenyan Ministry of Mines, and the National Env-ironmental Management Authority of Kenya. DOSECC Exploration Services supervised drilling by Drilling and Prospecting Interna-
tional (DPI). The LacCore and CSDCO facilities (University of Min-
estoa) assisted with core handling, processing and storage. Funding was provided by the Peter Buck Fund for Human Origins Research (Smithsonian), the William H. Donner Foundation (R.P.), the Ruth and Verne F. Taylor Foundation (R.P.), Whitney and Betty MacMillen Foundation (R.P.). National Science Foundation grants EAR 1322977 (A.L.D.) and EAR 1349599 (D.D.), a Smithsonian Postdoctoral Fellowship and the Geo. X - Research Network for Geosciences in Berlin and Potsdam (R.D.), the Swiss National Science Foundation grant P300P2 158501 (M.S.), and the Smithsonian’s Human Origins Program (R.P.). The Hong Kong Research Grants Council provided funding for diatom studies of the core material.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.quascirev.2021.107106.

References
