Paper No. 219-6
Presentation Time: 9:30 AM-9:45 AM
THE SILICA POLYMORPH COESITE: AN EXPLORATION OF THE ELECTRON DENSITY DISTRIBUTION
GIBBS, G.V.1, WHITTEN, Andrew2, SPACKMAN, Mark2, STIMPFL, Marilena3, CARDUCCI, Michael3, and DOWNS, Robert3, (1) Geosciences, Virginia Tech, 4044 Derring Hall, Blacksburg, VA 24061, gvgibbs@vt.edu, (2) Biological, Biomedical and Molecular Sciences, Univ of New England, Armidale, Australia, (3) Geosciences, Univ. Arizona, Tucson, AZ 85721

A multipole representation of the experimental electron density distribution for coesite, using Hirshfeld-type radial functions, has been generated with single crystal X-ray diffraction data recorded at 100 K. Deformation density maps display banana shaped isosurfaces in the lone pair regions of each the oxygen atoms as well as teardrop shaped ones along the SiO bond vectors. Laplacian maps display belt-shaped isosurfaces, centered near the apices of the bent SiOSi angles, that wrap about half way around the oxide anions, with a ring torus-shaped isosurface surrounding O1, the anion involved in the straight angle. An analysis of the Laplacian revealed that the (3,-3) critical point associated with the anions involved in the bent angles generally are associated with larger maxima than those involved in the straight angle, evidence that the electron density is more locally concentrated on the anions involved in the bent angles. As such, these anions are more susceptible to electrophilic attack by hydrogen, a feature that provides an experimental basis for why hydrogen in H-bearing coesite avoids O1 and docks in the vicinity of oxide anions involved in the bent angles. The bond critical point properties of the experimental multipole representation of the electron density distribution together with those for the very high pressure silica polymorph, stishovite, conform with those calculated for a relatively large number of silicate crystals. Not only are they similar in value with the theoretical properties but each correlates with the observed SiO bond lengths as predicted by the calculations.

2003 Seattle Annual Meeting (November 25, 2003)
Session No. 219
The Impact of Crystal Chemistry in the Earth Sciences II: A Tribute to Charles T. Prewitt, Recipient of the 2003 Roebling Medal of the Mineralogical Society of America
Washington State Convention and Trade Center: Ballroom 6A
8:00 AM-12:00 PM, Wednesday, November 5, 2003
 

© Copyright 2003 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.