Updates

- Grad proposal new deadlines
 - Outline by Oct 28
 - Optional deadline for grading early version Nov 16
 - Final due Dec 7
- Next week breakout/presentation Thurs
 - Presentation Readings are posted
 - They are not required if you have already started on another paper – just suggestions

Global carbon cycle, 1990’s (IPCC Ch7)
black = natural fluxes, red = anthropogenic fluxes

Ocean biogeochemistry -
Part 1: Gas exchange and the carbonate system

Global C cycle - key points:
- Petagrams = 10^{15} gm; in atmosphere 1 Pg = ~0.5 ppm
 - A petagram (Pg) = a gigaton (Gt); both terms are used.
- Relative sizes of reservoirs (in Gt or Pg)
 - Atmosphere 762
 - Veg/soils 2350 (veg ~750, soils ~1600)
 - Surface ocean 918
 - Deep ocean 37,200
 - Ocean seds 150
 - Carbonate rocks 66-100 x 10^6
 - Fossil fuels (var.) 3500
- Scale of anthropogenic fossil fuel perturbation relative to natural fluxes: generally small
 - 1980’s: 5.4 Gt/yr
 - 1990’s: 6.4 Gt/yr
 - 2009: 8.7 Gt/yr
- Note processes that move C around depend on climate, so change as climate changes
Ocean C cycle processes

critical on a broad range of time scales

- **Years/decades**: equilibration of CO$_2$ at surface; biological productivity
- **Centuries**: sequestration of C in deeper water via sinking of surface water to great depths (thermohaline circulation)
- **Millennia**: changes in amount of carbonate preserved or dissolved on ocean floor
- **Geologic scales**: burial of C-bearing sediments

Anthropogenic CO$_2$ in the ocean

Sabine et al. 2004, *Science*

- Fig: total inventory of anthropogenic CO$_2$ (all depths)
- 48% of anthropogenic CO$_2$ emitted (1800-1994) is in ocean
- (this leaves little room for biosphere to be a big net sink over this time frame)

The ocean carbon system - overview

- **Surface water - atmosphere exchange of CO$_2$**
 - Gas diffusion between ocean and atm. - depends on conc. gradient
 - Max concentration determined by solubility: f(T, S, P)
 - Key role of winds in determining rate of exchange
- **What happens next?**
 - **Reacts** to produce other forms of inorganic C: HCO$_3^-$, CO$_3^{2-}$
 - Balance of forms depends on pH
 - **Used** by biological productivity to form organic C tissue and calcium carbonate shells (next week!)
- **Transport to deep sea**
 - Solubility pump - sinking waters hold lots of CO$_2$
 - Biological pump - productivity incorporates C into particles that sink
 - Carbonate pump - related to biological; can increase surface CO$_2$
- **Other important processes (for the future):** ocean acidification, thermohaline circulation, nutrient biogeochemistry, ocean stratification

Exchange between ocean and atmosphere depends on

- **Concentration gradient** (difference in the partial pressure of CO2 in atmosphere vs ocean)
 - Solubility depends on specific conditions: T, sal, P
 - **Circulation:** Upwelling vs. nonupwelling
- **Wind speed** determines exchange rate
 - Nonlinear
- **CO$_2$ exchange is 2-way!**
 - Some ocean regions are a source, some a sink
 - Ever-increasing atmospheric CO2 drives net invasion
 - Areas of upwelling are sources locally
Air-sea CO₂ exchange

- Driven by concentration gradient
 - Yellow-red: CO₂ evasion to atmosphere
 - Blue-purple: CO₂ invasion from atmosphere

Total dissolved inorganic carbon

- Upwelling of deep water = source of CO₂ to atmosphere
- Recall ocean C reservoirs
 - Surface ~900 Gt
 - Deep ~37,000 Gt
- Deep water is enriched
 - Decay of sinking organic particles

Gas solubility in seawater

Solubility determines the maximum amount of CO₂ that seawater can hold under specific conditions.

- **Temperature** (more soluble in cold)
- **Salinity** (more soluble in fresher water; effect is small)
- **Pressure** (more soluble under high P)

From Bigg, 1998, *The Oceans and Climate*
CO₂ solubility compared to other gases

- CO₂ is off the charts - why?
- Reacts to form other compounds of dissolved inorganic C
 - HCO₃⁻ and CO₃²⁻: a reservoir of carbon
 - allow more CO₂ to enter at surface
 - (concentration gradient is determined only by CO₂, not the others)

From Bigg, 1998, *The Oceans and Climate*

Forms of dissolved inorganic carbon (DIC)

- Depends on pH
- Acidic: carbon in CO₂ form
- Basic: carbon mostly in carbonate (CO₃²⁻) form
- Ocean pH around 8: carbon mostly in bicarbonate (HCO₃⁻) form
 - 90% HCO₃⁻, 10% CO₃²⁻, <1% CO₂

Figure from Girard, *Environmental Chemistry*. The α stands for the fraction of total dissolved inorganic carbon present in the given form (CO₂, CO₃, or HCO₃⁻)

CO₂ buffering in seawater

- CO₂ enters ocean via gas diffusion, but most converts rapidly to HCO₃⁻
- Reaction:
 - CO₂ + CO₃²⁻ + H₂O → H⁺ + HCO₃⁻ + CO₃²⁻ → 2HCO₃⁻
- Thus addition of CO₂ draws down CO₃²⁻
 - Reduces ocean’s ability to absorb more: As CO₂ in atmosphere rises, strength of ocean C uptake will weaken.
 - Negative consequences for calcifying organisms such as corals (reduced calcification, weaker skeletons)
 - CO₂ is a weak acid, so adding more and keeping it as CO₂ makes ocean more acidic (but rate of change is buffered by change to HCO₃, CO₃ forms)

Carbon and Alkalinity

- **Fundamental control** on how much CO₂ the ocean can take in
- Can define in two ways:

 1. **Excess positive charge among components of seawater salinity** – the sum of cation charges minus sum of anion charges:

 \[[\text{Na}^+] + [\text{K}^+] + 2[\text{Mg}^{2+}] + 2[\text{Ca}^{2+}] - [\text{Cl}^-] - 2[\text{SO}_4^{2-}] - [\text{NO}_3^-] - [\text{HBO}_3^-] \]

 (these are the dissolved components of ocean “salt”)

 2. **Sum of HCO₃⁻ and CO₃²⁻**

 \[\text{ALK} = [\text{HCO}_3^-] + [\text{CO}_3^{2-}] \]

 (Easier to measure and balances the excess positive charge above)
Carbon and Alkalinity

- Why are these definitions equivalent??
- Excess positive charge must be balanced by negative charges, which come from HCO_3^- and CO_3^{2-}
- Carbonate systems provides electrical neutrality: forms of inorganic carbon shift to balance the charge precisely:
 \[\text{CO}_3^{2-} \rightleftharpoons \text{HCO}_3^- \rightleftharpoons \text{CO}_2 \]

- High alkalinity: most C is in CO_3^{2-} form (double-negative charge); low alkalinity: most C is in CO_2 (or HCO_3^-) form
- Which
- Alkalinity determines the ultimate ability of the ocean to absorb and buffer CO2
 - Alk in turn is determined by rock weathering (= slow!)

Alkalinity

- Which can absorb more CO2 from the atmosphere, high alkalinity waters or low alkalinity waters?
 - High alkalinity = high positive charge = high CO_3^{2-}

Alkalinity

- What controls alkalinity?
 - Weathering of rocks to produce cations (long time scales, global)
 - Biological productivity that uses Ca++ and others (short time scales, patchy)

- Slow rate of (geological) cation addition means that ability of ocean to take up CO2 will inevitably decrease as anthropogenic CO2 is added (alk cannot keep up)

Ocean as long-term carbon sink

- Recall ocean C reservoirs
 - Surface ~900 Gt
 - Deep ~37,000 Gt
- Deep water is enriched
 - Decay of sinking organic particles

- Effectively removing carbon from the atmosphere (for long periods - centuries+) requires that C get into the deep ocean.
How does carbon move from surface to deep ocean?

- **Solubility pump**
 - Where cold waters sink, can transport CO\(_2\) to depth
- **Biological pump**
 - Organic carbon
 - Carbonate counter-pump - enriches surface waters in CO\(_2\) on short term

Carbon transport to deep sea

- **Solubility pump**: CO\(_2\) more soluble in cold, saline waters. In the North Atlantic, cold deep waters (denser than surroundings) sink into the depths. This process takes carbon out of surface and into deep.

Carbon transport to deep sea

- **Biological pump**: photosynthesis converts inorganic carbon to organic particles, which reduces surface [DIC].
 - Sinking particles (~25%)* remove C from surface to deep waters
 - a very small fraction (1-2% of C)* is buried in seds.
- **Most effective where nutrients are high**

* - Most C is released by decay (respiration) in either surface or deep waters.

Carbon transport to deep sea

- **Carbonate counter pump**: Organic productivity is also associated with CaCO\(_3\) production
 - \(\text{Ca}^{++} + \text{CO}_3^{-} \rightarrow \text{CaCO}_3\)
 - CaCO\(_3\) precipitation decreases alkalinity by 2 units (via removal of double-charged Ca\(^{++}\)) but total CO\(_2\) by only one unit (via removal of CO\(_3^{-}\))
 - Due to dominance of alkalinity change, there is a net shift of carbon towards CO\(_2\):
 - \(\text{CO}_3^{-} \leftrightarrow \text{HCO}_3^{-} \leftrightarrow \text{CO}_2\)
 - Formation of CaCO\(_3\) therefore increases surface water CO\(_2\)! (counterintuitive since it also removes C)
The ocean carbon system - overview

- Surface water uptake of CO₂
 - Gas diffusion between ocean and atm. - depends on conc. gradient
 - Max concentration determined by solubility: f(T, S, P)
 - Key role of winds in determining rate of exchange

- What happens next?
 - Reacts to produce other forms of inorganic C: HCO₃⁻, CO₃²⁻
 - Balance of forms depends on pH
 - Used by biological productivity to form organic C tissue and calcium carbonate shells (next week!)

- Transport to deep sea
 - Solubility pump - sinking waters hold lots of CO₂
 - Biological pump - productivity incorporates C into particles that sink
 - Carbonate pump - related to biological; can increase surface CO₂!

- Other important processes (for the future): ocean acidification, thermohaline circulation, nutrient biogeochemistry, ocean stratification
Acidity: Changing ocean chemistry

- As CO$_2$ rises, pH and CO$_3^{2-}$ fall

Notes on carbonate saturation

\[\text{Ca}^{++} + \text{CO}_3^{2-} \rightarrow \text{CaCO}_3 \]

- Saturation state, Ω: a measure of how saturated the surface ocean is with respect to CaCO$_3$ (how easily can CaCO$_3$ form?)
 - If $\Omega > 1$, supersaturated: precipitation (in fresh water)
 - If $\Omega < 1$, undersaturated: dissolution (in fresh water)

- Increase atmospheric CO$_2$ means that:
 - CO$_2$ is reduced, Ω decreases
 - CO$_2$ increases, so pH drops.

- Sample values for surface ocean:
 - Today: (365 ppm) $\Omega = 4.0$, pH = 8.05
 - Preindustrial: (280 ppm) $\Omega = 4.6$, pH = 8.16
 - Glacial: (200 ppm) $\Omega = 5.6$, pH = 8.26
 - 2100: (700? ppm) $\Omega = 2.8$, pH = 7.9

More on carbonate saturation state

- Nearly always positive, so why worry?
 - Organisms appear to care about degree of supersaturation; calc decreases even though $\Omega > 1$
 - Expanding regions where $\Omega < 1$ means inorganic dissolution regions are growing.

- Calcification reduced under lower saturation state
 - coccoliths and other plankton (90% of current calc), reef organisms (10% of current calc)